搭建一个利用docker启动服务的Flask的小demo
定义数据库
# -*- coding: utf-8 -*-
from sqlalchemy import *
from sqlalchemy.orm import (
scoped_session, sessionmaker, relationship, backref
)
from sqlalchemy.ext.declarative import declarative_base
# mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
engine = create_engine("mysql+mysqlconnector://root:@localhost:3306/demo", convert_unicode=True)
session = scoped_session(sessionmaker(
autocommit=False, autoflush=False, bind=engine
))
Base = declarative_base()
Base.query = session.query_property()
class Department(Base):
__tablename__ = "department"
id = Column(Integer, primary_key=True)
name = Column(String(50))
class Employee(Base):
__tablename__ = "employee"
id = Column(Integer, primary_key=True)
name = Column(String(50))
hired_on = Column(DateTime, default=func.now())
department_id = Column(Integer, ForeignKey("department.id"))
department = relationship(
Department,
backref=backref(
"employee",
uselist=True,
cascade="delete,all"
)
)
利用SQLAlchemy定义了两个表,其中Department通过relationship可以关联多个Employee,然后通过python console创建表和数据:
>>> from models import *
>>>
>>>
>>> Base.metadata.create_all(bind=engine)
>>>
>>>
>>> engineering = Department(name="Engineering")
>>> session.add(engineering)
>>> hr = Department(name="Human")
>>> session.add(hr)
>>>
>>>
>>> peter = Employee(name="Peter", department=engine)
engine engine_from_config( engineering
>>> peter = Employee(name="Peter", department=engineering)
>>>
>>> session.add(peter)
>>>
>>>
>>>
>>> roy = Employee(name="Roy", department=engineering)
>>>
>>> session.add(roy)
>>>
>>>
>>> tracy = Employee(name="Tracy", department=hr)
>>>
>>> session.add(tracy)
定义graphql的的Query
# -*- coding: utf-8 -*-
from graphene import relay, ObjectType, Schema
from graphene_sqlalchemy import (
SQLAlchemyConnectionField, SQLAlchemyObjectType
)
from models import (
Department as DepartmentModel,
Employee as EmployeeModel
)
class Department(SQLAlchemyObjectType):
class Meta:
model = DepartmentModel
interfaces = (relay.Node, )
class DepartmentConnections(relay.Connection):
class Meta:
node = Department
class Employee(SQLAlchemyObjectType):
class Meta:
model = EmployeeModel
interfaces = (relay.Node, )
class EmployeeConnections(relay.Connection):
class Meta:
node = Employee
class Query(ObjectType):
node = relay.Node.Field()
all_employees = SQLAlchemyConnectionField(EmployeeConnections)
all_departments = SQLAlchemyConnectionField(DepartmentConnections, sort=None)
schema = Schema(query=Query)
首先通过继承SQLAlchemyObjectType类来定义新的查询的类,然后通过relay.Connection来连接所定义的查询类,并且在Query中进行申明,其中我在Connection后面加了一个s是因为在github上看issue的时候发现在构造类的过程中会出现重名的情况导致申明Query的时候会报错,所以加一个s用来避免这个错误。
其中有关graphene的部分我自己也还不是特别熟悉,所以只能是大概说一下自己的思路,如果有错误的地方会在后续中及时的进行修改,避免误人子弟。
最终达到的效果是指定来一个schema,其中包含了我所定义的查询。
本地启动
# -*- coding: utf-8 -*-
from flask import Flask
from flask_graphql import GraphQLView
from models import session
from schema import schema
app = Flask(__name__)
app.debug = True
app.add_url_rule(
"/graphql",
view_func=GraphQLView.as_view(
"graphql",
schema=schema,
graphiql=True
)
)
@app.teardown_appcontext
def shutdown_session(exception=None):
session.remove()
if __name__ == "__main__":
app.run()
通过Flask的add_url_rule将graph的视图定义成通过路由可访问,然后启动就可以进行访问了,点击http://127.0.0.1:5000/graphql就可以本地访问了。
通过docker启动
- 建立镜像
# run.docker
FROM python:3.6
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
CMD ["python", "app.py"]
这个是我的Dockerfile,通过Dockerfile,我指定了这个镜像是来自于python:3.6
这个镜像,然后把我当前目录下的所有内容通过COPY . /app
复制到了docker镜像中的/app
目录下,接着我指定了WORKDIR
为/app
,这样我就可以在/app
目录下进行操作了,首先是安装所有需要的依赖包,因为我是从python3.6拉的镜像,所以可以不用再去安装pip,直接就可以安装了,如果是其他镜像可能还要同构apt去安装pip再进行依赖包的安装,最后就是用CMD
来运行文件了。
docker build -t flask_sqlalchemy:core -f run.docker .
# 其中的.是为了指明上下文路径,其实Dockerfile中的命令并不是对本地文件进行操作,而是通过指定上下文路径将这些文件传到docker搭建镜像的环境中再进行操作。
镜像建立之后就可以run了
docker run -d -p 5000:5000 --name flask-core flask_sqlalchemy:lastest
然后就启动了。