题解
买进书有点麻烦..
我们考虑每天强制买进书
那么把书留到这一天,那么就等于在前一天卖了后,这一天又买回来,
卖出的价值为(-C_{a[i]})
然后对每一天建两个点(A,B)
到了(B)点,就等于卖了这本书
然后(A_i->A_{i+1})连((k-1,0))
因为强制买书,所以只有(k-1)本书流向这天
(S->A_{i})连((1,C_{a[i] }))
(A_{i}->B_{i})连((1, 0))
(B_i->T)连((1,0))
记(pos[i])表示书(i)上一次出现的位置
那么(A_{i-1}->B_{pos[i]})连((1,-C_{a[i]}))
然后跑最小费用最大流
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 210, M = 2000010, inf = 2147483647;
struct node {
int to, nxt, w, v;
}g[M];
int last[N], gl = 1;
void add(int x, int y, int w, int v) {
g[++gl] = (node) {y, last[x], w, v};
last[x] = gl;
g[++gl] = (node) {x, last[y], 0, -v};
last[y] = gl;
}
int dis[N], s, t, pre[N], from[N];
bool vis[N];
queue<int> q;
inline bool spfa() {
memset(dis, 127 / 3, sizeof(dis));
dis[s] = 0;
q.push(s);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = last[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (dis[v] > dis[u] + g[i].v && g[i].w) {
dis[v] = dis[u] + g[i].v;
pre[v] = u; from[v] = i;
if (!vis[v]) vis[v] = 1, q.push(v);
}
}
vis[u] = 0;
}
return dis[0] != dis[t];
}
int a[85], c[85], n, k;
inline int Mcmf() {
int res = 0;
while (spfa()) {
int di = inf;
for (int i = t; i != s; i = pre[i]) di = min(di, g[from[i]].w);
res += di * dis[t];
for (int i = t; i != s; i = pre[i]) g[from[i]].w -= di, g[from[i] ^ 1].w += di;
}
return res;
}
int pos[85];
int main() {
read(n), read(k);
s = n * 2 + 1, t = s + 1;
for (int i = 1; i <= n; i++) read(a[i]);
for (int i = 1; i <= n; i++) read(c[i]);
for (int i = 1; i <= n; i++) {
add(s, i, 1, c[a[i]]);
add(i + n, t, 1, 0);
add(i, i + n, 1, 0);
if (pos[a[i]]) add(i - 1, pos[a[i]] + n, 1, -c[a[i]]);
pos[a[i]] = i;
}
for (int i = 1; i < n; i++)
add(i, i + 1, k - 1, 0);
printf("%d
", Mcmf());
return 0;
}