题面
题解
首先,显然一个人实际位置只可能大于或等于编号
先考虑无解的情况
对于编号为(i),如果确认的人编号在([i,n])中数量大于区间长度,那么就无解
记(S[i])表示确认的人编号在([i,n])中数量
我们只要考虑剩下的(n - m)人
(f[i][j])表示编号(>=i)的,已经确认了(j)人
那么我们枚举多少人编号为(i)
(f[i][j] = sum f[i + 1][j - k] * (^j_k))
因为交换一些人的编号也是可行方案,所以乘上一个组合数
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 310;
int n, m, Mod, s[N], f[N][N], C[N][N];
void pls(int &x, int y) {
x += y;
if (x >= Mod) x -= Mod;
}
void solve() {
read(n), read(m), read(Mod);
for (int i = 0; i <= 300; i++) C[i][0] = C[i][i] = 1;
for (int i = 2; i <= 300; i++)
for (int j = 1; j < i; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % Mod;
memset(s, 0, sizeof(s));
for (int i = 1, x; i <= m; i++) read(x), read(x), s[x]++;
for (int i = n; i; i--) s[i] += s[i + 1];
bool flag = 0;
for (int i = 1; i <= n; i++)
if (s[i] > n - i + 1) {
flag = 1;
break;
}
if (flag) {
puts("NO");
return ;
}
memset(f, 0, sizeof(f));
f[n + 1][0] = 1;
for (int i = n; i; i--)
for (int j = 0; j <= n - i + 1 - s[i]; j++)
for (int k = 0; k <= j; k++)
pls(f[i][j], 1ll * f[i + 1][j - k] * C[j][k] % Mod);
printf("YES %d
", f[1][n - m]);
return ;
}
int main() {
int T;
read(T);
while (T--) solve();
return 0;
}