题面
题解
(n leq 15)
状压
(f[i][S])表示第(i)轮,吃过的集合为(S)
正着转移好像有点复杂
考虑逆推转移(正着转移应该也行)
(f[i][S])表示([1,i-1])轮,吃过的集合为(S),第(i)轮到第(k)轮最大期望得分
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
const int N = 16;
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
int k, n, need[N], w[N];
double f[110][1<<N];
int main() {
read(k), read(n);
for (int i = 0, x; i < n; i++) {
read(w[i]);
while (1) {read(x); if (!x) break; x--;need[i] |= (1 << x);}
}
int limit = 1 << n;
for (int i = k; i; i--)
for (int S = 0; S < limit; S++) {
for (int j = 0; j < n; j++)
if ((need[j] & S) == need[j])
f[i][S] += max(f[i + 1][S | (1 << j)] + w[j], f[i + 1][S]);
else f[i][S] += f[i + 1][S];
f[i][S] /= n;
}
printf("%lf
", f[1][0]);
return 0;
}