zoukankan      html  css  js  c++  java
  • 【模板】"动态 DP"&动态树分治

    题面链接

    动态dp

    #include<bits/stdc++.h>
    
    #define LL long long
    #define RG register
    
    using namespace std;
    template<class T> inline void read(T &x) {
    	x = 0; RG char c = getchar(); bool f = 0;
    	while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
    	while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
    	x = f ? -x : x;
    	return ;
    }
    template<class T> inline void write(T x) {
    	if (!x) {putchar(48);return ;}
    	if (x < 0) x = -x, putchar('-');
    	int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
    	for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
    }
    const int N = 100010, inf = 2147483647;
    struct node {
    	int to, nxt;
    }g[N << 1];
    int last[N], gl, v[N], n;
    void add(int x, int y) {
    	g[++gl] = (node) {y, last[x]};
    	last[x] = gl;
    	g[++gl] = (node) {x, last[y]};
    	last[y] = gl;
    }
    struct Matrix {
    	LL s[2][2];
    	Matrix operator * (const Matrix &A) const {
    		Matrix res;
    		res.s[0][0] = max(s[0][0] + A.s[0][0], s[0][1] + A.s[1][0]);
    		res.s[0][1] = max(s[0][0] + A.s[0][1], s[0][1] + A.s[1][1]);
    		res.s[1][0] = max(s[1][0] + A.s[0][0], s[1][1] + A.s[1][0]);
    		res.s[1][1] = max(s[1][0] + A.s[0][1], s[1][1] + A.s[1][1]);
    		return res;
    	}
    }t[N << 2], tmp[N];
    int dfn[N], siz[N], son[N], top[N], cnt, fa[N], pos[N], ed[N];
    void dfs1(int u, int ff) {
    	siz[u] = 1;
    	for (int i = last[u]; i; i = g[i].nxt) {
    		int v = g[i].to; if (v == ff) continue;
    		fa[v] = u; dfs1(v, u); siz[u] += siz[v];
    		if (siz[v] > siz[son[u]]) son[u] = v;
    	}
    }
    void dfs2(int u, int topf) {
    	top[u] = topf; pos[u] = ++cnt; dfn[cnt] = u;
    	if (!son[u]) { ed[u] = u; return ; }
    	dfs2(son[u], topf);
    	ed[u] = ed[son[u]];
    	for (int i = last[u]; i; i = g[i].nxt) {
    		int v = g[i].to; if (v == fa[u] || v == son[u]) continue;
    		dfs2(v, v);
    	}
    }
    LL f[N][2];
    void dp(int u, int ff) {
    	f[u][1] = v[u];
    	for (int i = last[u]; i; i = g[i].nxt) {
    		int v = g[i].to; if (v == ff) continue;
    		dp(v, u);
    		f[u][0] += max(f[v][1], f[v][0]);
    		f[u][1] += f[v][0];
    	}
    	return ;
    }
    //---------------------
    #define lson (o << 1)
    #define rson (o << 1 | 1)
    void build(int o, int l, int r) {
    	if (l == r) {
    		int u = dfn[l], g0 = 0, g1 = v[u];
    		for (int i = last[u]; i; i = g[i].nxt)
    			if (g[i].to != son[u] && g[i].to != fa[u])
    				g0 += max(f[g[i].to][0], f[g[i].to][1]), g1 += f[g[i].to][0];
    		//	printf("%d %d %d %d %d
    ", u, g0, g1, son[u], fa[u]);
    		tmp[l] = t[o] = (Matrix) {g0, g0, g1, -inf};
    		return ;
    	}
    	int mid = (l + r) >> 1;
    	build(lson, l, mid), build(rson, mid + 1, r);
    	t[o] = t[lson] * t[rson];
    }
    void Modify(int o, int l, int r, int p) {
    	if (l == r) { t[o] = tmp[p]; return ; }
    	int mid = (l + r) >> 1;
    	if (p <= mid) Modify(lson, l, mid, p);
    	else Modify(rson, mid + 1, r, p);
    	t[o] = t[lson] * t[rson];
    }
    Matrix query(int o, int l, int r, int L, int R) {
    	if (L <= l && r <= R) return t[o];
    	int mid = (l + r) >> 1;
    	if (R <= mid) return query(lson, l, mid, L, R);
    	if (L > mid) return query(rson, mid + 1, r, L, R);
    	return query(lson, l, mid, L, R) * query(rson, mid + 1, r, L, R);
    }
    Matrix getans(int x) { return query(1, 1, n, pos[top[x]], pos[ed[x]]); }
    void Modify(int u, int w) {
    	tmp[pos[u]].s[1][0] += w - v[u]; v[u] = w;
    	while (u) {
    		Matrix a = getans(u); Modify(1, 1, n, pos[u]); Matrix b = getans(u);
    		u = fa[top[u]]; if (!u) break;
    		tmp[pos[u]].s[0][1] = (tmp[pos[u]].s[0][0] += max(b.s[0][0], b.s[1][0]) - max(a.s[0][0], a.s[1][0]));
    		tmp[pos[u]].s[1][0] += b.s[0][0] - a.s[0][0];
    	}
    }
    
    //---------------------------
    
    int main() {
    	int m, x, w; Matrix ans;
    	read(n), read(m);
    	for (int i = 1; i <= n; i++) read(v[i]);
    	for (int i = 1, x, y; i < n; i++) { read(x), read(y); add(x, y); }
    	dfs1(1, 0); dfs2(1, 1); dp(1, 0); build(1, 1, n);
    	//	ans = getans(1);
    	//	printf("%lld
    ", max(ans.s[0][0], ans.s[1][0]));
    	while (m--) {
    		read(x), read(w);
    		Modify(x, w); 
    		ans = getans(1);
    		printf("%lld
    ", max(ans.s[0][0], ans.s[1][0]));
    	}	
    	return 0;
    }
    
    

    %yyb

    整体(dp)

    整体(dp)大概是对于时间建一颗线段树,叶子节点表示在该时刻的(dp)答案,类似线段是分治。
    对于一个转移,等于给区间打标记。
    对于树,我们用线段树合并将子树(dp)合并。
    这个时候我们需要用一些方式维护(DP)
    还是用动态(dp)的矩阵方式维护(DP)
    (egin{bmatrix}f_{v,0}&f_{v,1}end{bmatrix} imes egin{bmatrix}f_{u,0}&f_{u,1}\f_{u,0}&-inftyend{bmatrix}=egin{bmatrix}f_{u',0}&f_{u',1}end{bmatrix})
    但是这样的话,矩形没转移一次就会遍一次,就不能快速合并儿子。
    我们可以先转一下矩阵
    (egin{bmatrix}f_{u,0}&f_{u,1}end{bmatrix} imes egin{bmatrix}0&0\0&-inftyend{bmatrix}=egin{bmatrix}max(f_{u,0},f_{u,1})&f_{u,0}end{bmatrix})
    然后
    (egin{bmatrix}sum max(f_{v,0},f_{v,1})&sum f_{v,0}end{bmatrix} imes egin{bmatrix}0&0\-infty&wend{bmatrix}=egin{bmatrix}f_{u,0}&f_{u,1}end{bmatrix})
    这样就可以线段树合并求出第一个矩阵,然后算出(u)(DP)值。
    还有一个问题就是,区间加的线段树怎么合并?
    其实,我们每次合并两个节点是(pushdown)一下,然后如果有一个已经是叶子了,就直接合并到另一个上去即可。

    #include<bits/stdc++.h>
    
    #define mp make_pair
    #define LL long long
    
    using namespace std;
    template<class T> T gi() {
    	T x = 0; bool f = 0; char c = getchar();
    	while (c != '-' && (c < '0' || c > '9')) c = getchar();
    	if (c == '-') f = 1, c = getchar();
    	while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    	return f ? -x : x;
    }
    const int N = 1e5 + 10, inf = 1e9 + 7;
    int n, m;
    vector<int> e[N];
    void add(int x, int y) { e[x].push_back(y), e[y].push_back(x); }
    int rt[N], tot;
    struct Matrix {
    	int a[2][2];
    	int *operator [] (int x) { return a[x]; }
    	Matrix operator * (const Matrix &z) const {
    		Matrix res;
    		res[0][0] = max(a[0][0] + z.a[0][0], a[0][1] + z.a[1][0]);
    		res[0][1] = max(a[0][0] + z.a[0][1], a[0][1] + z.a[1][1]);
    		res[1][0] = max(a[1][0] + z.a[0][0], a[1][1] + z.a[1][0]);
    		res[1][1] = max(a[1][0] + z.a[0][1], a[1][1] + z.a[1][1]);
    		return res;
    	}
    	bool operator != (const Matrix &z) const {
    		return a[0][0] != z.a[0][0] || a[0][1] != z.a[0][1] || a[1][0] != z.a[1][0] || a[1][1] != z.a[1][1]; 
    	}
    } t[N << 6], I;
    Matrix mk(int x, int y) { return (Matrix) {{{x, -inf}, {-inf, y}}}; }
    int ch[N << 6][2], w[N];
    struct node { int l, r, w; };
    vector<node> q[N];
    void pushdown(int o) {
    	if (t[o] != I) {
    		if (!ch[o][0]) 
    			t[ch[o][0] = ++tot] = t[o];
    		else t[ch[o][0]] = t[ch[o][0]] * t[o];
    		if (!ch[o][1]) 
    			t[ch[o][1] = ++tot] = t[o];
    		else t[ch[o][1]] = t[ch[o][1]] * t[o];
    		t[o] = I;
    	}
    }
    int merge(int x, int y) {
    	if (!x || !y) return x | y;
    	if (!ch[x][0] && !ch[x][1]) swap(x, y);
    	if (!ch[y][0] && !ch[y][1]) {
    		t[x] = t[x] * mk(t[y][0][0], t[y][0][1]);
    		return x;
    	}
    	pushdown(x), pushdown(y);
    	ch[x][0] = merge(ch[x][0], ch[y][0]);
    	ch[x][1] = merge(ch[x][1], ch[y][1]);
    	return x;
    }
    void Modify(int o, int l, int r, int L, int R, int k) {
    	if (L <= l && r <= R) return (void) (t[o] = t[o] * (Matrix) {{{0, -inf}, {0, k}}});
    	int mid = (l + r) >> 1; pushdown(o);
    	if (L <= mid) Modify(ch[o][0], l, mid, L, R, k);
    	if (R > mid) Modify(ch[o][1], mid + 1, r, L, R, k);
    	return ;
    }
    void dfs(int u, int ff) {
    	t[rt[u] = ++tot] = (Matrix) {{{0, 0}, {0, 0}}};
    	for (auto v : e[u])
    		if (v != ff)
    			dfs(v, u), rt[u] = merge(rt[u], rt[v]);
    	for (auto i : q[u]) if (i.l <= i.r) Modify(rt[u], 1, m, i.l, i.r, i.w);
    	t[rt[u]] = t[rt[u]] * (Matrix) {{{0, 0}, {0, -inf}}};
    }
    void dfs2(int o, int l, int r) {
    	if (l == r) { printf("%d
    ", t[o][0][0]); return ; }
    	int mid = (l + r) >> 1; pushdown(o);
    	dfs2(ch[o][0], l, mid), dfs2(ch[o][1], mid + 1, r);
    }
    int main() {
    	n = gi<int>(), m = gi<int>(); I = mk(0, 0);
    	for (int i = 1; i <= n; i++) q[i].push_back((node) {1, m, gi<int>()});
    	for (int i = 1; i < n; i++) add(gi<int>(), gi<int>());
    	for (int i = 1; i <= m; i++) {
    		int x = gi<int>(), y = gi<int>();
    		q[x].rbegin() -> r = i - 1;
    		q[x].push_back((node) {i, m, y});
    	}
    	dfs(1, 0); dfs2(rt[1], 1, m);
    	return 0;
    }
    
    
  • 相关阅读:
    github fork项目后,代码更新
    UIScrollView的用法,属性
    调整屏幕亮度,调整字体大小
    iOS UIFont 字体名字大全
    ios 6以后,UILabel全属性
    oc中的各种遍历(迭代)方法
    判断app是否是第一次启动
    ios 显示代码块(show the code snippet library)
    ios 添加动画的方法
    添加app第一次启动页面
  • 原文地址:https://www.cnblogs.com/zzy2005/p/13700340.html
Copyright © 2011-2022 走看看