题目链接
题解
这题有点神啊。。
我们仔细观察一下,发现两个栈内元素必须为降序
那么有结论 如果有(i < j < k) 且 (a[k] < a[i] < a[j])则(i)和(j)不能存在于同一个栈
证明:
因为栈内元素必须降序,
那么加入(a[j])时一定弹出了(a[i]),而又因为从小到大排序,
所以(a[k])应该在(a[i])前弹出,故结论正确。
证毕!
因为是两个栈
那么我们可以搞一个二分图染色
最后贪心模拟一遍
Code
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int a[N], s1[N], s2[N], Min[N], t1, t2, ans[N<<1], len, n;
bool G[N][N], vis[N];
int z[N];
void dfs(int x, int c) {
vis[x] = 1; z[x] = c;
for (int i = 1; i <= n; i++) {
if (!G[x][i]) continue;
if (!vis[i])
dfs(i, c^1);
else if (c == z[i]) {
printf("0
");
exit(0);
}
}
return ;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
Min[n+1] = 2147483647;
for (int i = n; i >= 1; i--)
Min[i] = min(Min[i+1], a[i]);
for (int i = 1; i < n; i++)
for (int j = i+1; j <= n; j++)
if (Min[j+1] < a[i] && a[i] < a[j])
G[i][j] = G[j][i] = 1;
for (int i = 1; i <= n; i++)
if (!vis[i])
dfs(i, 0);
int now = 1;
for (int i = 1; i <= n; i++) {
if (!z[i]) {
while (s1[t1] == now) {
now++;
t1--;
ans[++len] = 1;
}
s1[++t1] = a[i];
len++;
}
else {
while (s1[t1] == now) {
now++;
t1--;
ans[++len] = 1;
}
while (s2[t2] == now) {
now++;
t2--;
ans[++len] = 3;
}
s2[++t2] = a[i];
ans[++len] = 2;
}
}
while (now <= n) {
if (s1[t1] == now) ans[++len] = 1, t1--;
else ans[++len] = 3, t2--;
now++;
}
for (int i = 1; i <= len; i++) printf("%c ", ans[i]+'a');
return 0;
}