zoukankan      html  css  js  c++  java
  • POJ 2127 Greatest Common Increasing Subsequence

    Description

    You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal possible length. 
    Sequence S1 , S2 , . . . , SN of length N is called an increasing subsequence of a sequence A1 , A2 , . . . , AM of length M if there exist 1 <= i1 < i2 < . . . < iN <= M such that Sj = Aij for all 1 <= j <= N , and Sj < Sj+1 for all 1 <= j < N .

    Input

    Each sequence is described with M --- its length (1 <= M <= 500) and M integer numbers Ai (-231 <= Ai < 231 ) --- the sequence itself.

    Output

    On the first line of the output file print L --- the length of the greatest common increasing subsequence of both sequences. On the second line print the subsequence itself. If there are several possible answers, output any of them.

    Sample Input

    5
    1 4 2 5 -12
    4
    -12 1 2 4

    Sample Output

    2
    1 4

    题意:求最长上升公共子序列(LCIS),并记录路径.
    状态:dp[i][j]表示以s1串的前i个字符s2串的前j个字符且以s2[j]为结尾构成的LCIS的长度。

    状态转移:当 s1[i-1]!=s2[j-1]时,按照lcs可知由2个状态转移过来,dp[i-1][j],dp[i][j-1],因为dp[i][j]是以s2[j]为结尾构成的LCIS的长度。所以s2[j-1]一定会包含在里面,所以舍去dp[i][j-1],只由dp[i-1][j] 转移过来。当s1[i-1]==s2[j-1],这时肯定要找前面s1[ii-1]==s2[jj-1]的最长且比s2[j-1]小的状态转移过来.

    若s1[i-1]!=s2[j-1] 那么dp[i][j]=dp[i][j-1]

    若s1[i-1]==s2[j-1] 那么dp[i][j]=MAX{dp[i-1][k]+1(0<k<j),s2[k-1]<s2[j-1]};

     1 #include<stdio.h>
     2 #include<string.h>
     3 #define N 505
     4 
     5 int i, j, n, m, len;
     6 int s1[N], s2[N], rd[N][N], dp[N][N];
     7 
     8 void DP()
     9 {
    10     int mac = 0, ans = 0, I, J, lu[N], mx;
    11     for(i = 1; i <= n; i++){
    12         mx = 0;
    13         for(j = 1; j <= m; j++){
    14             int tem = dp[i][j] = dp[i-1][j];
    15             if(mx < tem && s1[i-1] > s2[j-1]){
    16                 mx = tem;
    17                 mac = j;
    18             }
    19             if(s1[i-1] == s2[j-1]){
    20                 dp[i][j] = mx + 1;
    21                 rd[i][j] = mac;
    22             }
    23             if(ans < dp[i][j]){
    24                 ans = dp[i][j];
    25                 I = i, J = j;
    26             }
    27         }
    28     }
    29     printf("%d
    ", ans);
    30     len = ans;
    31     if(ans > 0)
    32         lu[ans--] = J-1;
    33     while(ans && I && J){
    34         if(rd[I][J] > 0){
    35             lu[ans--] = rd[I][J] - 1;
    36             J = rd[I][J];
    37         }
    38         I--;
    39     }
    40     for(i = 1; i <= len; i++)
    41         printf("%d ",s2[lu[i]]);
    42     printf("
    ");
    43 }
    44 
    45 int main()
    46 {
    47     scanf("%d", &n);
    48     for(i = 0; i < n; i++)
    49         scanf("%d", &s1[i]);
    50     scanf("%d", &m);
    51     for(i = 0; i < m; i++)
    52         scanf("%d", &s2[i]);
    53     DP();
    54     return 0;
    55 }
  • 相关阅读:
    csp-s模拟99题解
    csp-s模拟9697题解
    csps模拟9495凉宫春日的忧郁,漫无止境的八月,简单计算,格式化,真相题解
    csps模拟93序列,二叉搜索树,走路题解
    csps模拟92数列,数对,最小距离题解
    csps模拟8990部分题解
    csps模拟87888990部分题解
    csps模拟86异或,取石子,优化题解
    csps模拟85表达式密码,电压机制,括号密码题解
    csps模拟83最大异或和简单的括号序列旅行计划题解
  • 原文地址:https://www.cnblogs.com/zzy9669/p/3867516.html
Copyright © 2011-2022 走看看