zoukankan      html  css  js  c++  java
  • POJ 2127 Greatest Common Increasing Subsequence

    Description

    You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal possible length. 
    Sequence S1 , S2 , . . . , SN of length N is called an increasing subsequence of a sequence A1 , A2 , . . . , AM of length M if there exist 1 <= i1 < i2 < . . . < iN <= M such that Sj = Aij for all 1 <= j <= N , and Sj < Sj+1 for all 1 <= j < N .

    Input

    Each sequence is described with M --- its length (1 <= M <= 500) and M integer numbers Ai (-231 <= Ai < 231 ) --- the sequence itself.

    Output

    On the first line of the output file print L --- the length of the greatest common increasing subsequence of both sequences. On the second line print the subsequence itself. If there are several possible answers, output any of them.

    Sample Input

    5
    1 4 2 5 -12
    4
    -12 1 2 4

    Sample Output

    2
    1 4

    题意:求最长上升公共子序列(LCIS),并记录路径.
    状态:dp[i][j]表示以s1串的前i个字符s2串的前j个字符且以s2[j]为结尾构成的LCIS的长度。

    状态转移:当 s1[i-1]!=s2[j-1]时,按照lcs可知由2个状态转移过来,dp[i-1][j],dp[i][j-1],因为dp[i][j]是以s2[j]为结尾构成的LCIS的长度。所以s2[j-1]一定会包含在里面,所以舍去dp[i][j-1],只由dp[i-1][j] 转移过来。当s1[i-1]==s2[j-1],这时肯定要找前面s1[ii-1]==s2[jj-1]的最长且比s2[j-1]小的状态转移过来.

    若s1[i-1]!=s2[j-1] 那么dp[i][j]=dp[i][j-1]

    若s1[i-1]==s2[j-1] 那么dp[i][j]=MAX{dp[i-1][k]+1(0<k<j),s2[k-1]<s2[j-1]};

     1 #include<stdio.h>
     2 #include<string.h>
     3 #define N 505
     4 
     5 int i, j, n, m, len;
     6 int s1[N], s2[N], rd[N][N], dp[N][N];
     7 
     8 void DP()
     9 {
    10     int mac = 0, ans = 0, I, J, lu[N], mx;
    11     for(i = 1; i <= n; i++){
    12         mx = 0;
    13         for(j = 1; j <= m; j++){
    14             int tem = dp[i][j] = dp[i-1][j];
    15             if(mx < tem && s1[i-1] > s2[j-1]){
    16                 mx = tem;
    17                 mac = j;
    18             }
    19             if(s1[i-1] == s2[j-1]){
    20                 dp[i][j] = mx + 1;
    21                 rd[i][j] = mac;
    22             }
    23             if(ans < dp[i][j]){
    24                 ans = dp[i][j];
    25                 I = i, J = j;
    26             }
    27         }
    28     }
    29     printf("%d
    ", ans);
    30     len = ans;
    31     if(ans > 0)
    32         lu[ans--] = J-1;
    33     while(ans && I && J){
    34         if(rd[I][J] > 0){
    35             lu[ans--] = rd[I][J] - 1;
    36             J = rd[I][J];
    37         }
    38         I--;
    39     }
    40     for(i = 1; i <= len; i++)
    41         printf("%d ",s2[lu[i]]);
    42     printf("
    ");
    43 }
    44 
    45 int main()
    46 {
    47     scanf("%d", &n);
    48     for(i = 0; i < n; i++)
    49         scanf("%d", &s1[i]);
    50     scanf("%d", &m);
    51     for(i = 0; i < m; i++)
    52         scanf("%d", &s2[i]);
    53     DP();
    54     return 0;
    55 }
  • 相关阅读:
    JDK Integer.reverse 算法实现分析
    HomeBrew更新
    时序数据简介
    MQTT协议简析
    Maven+Spring Profile实现生产环境和开发环境的切换
    Thread与Runnable的一个小陷阱
    HashMap的内部实现机制,Hash是怎样实现的,什么时候ReHash
    该不该在C#中使用var关键词
    疑难问题解决备忘录(3)——ubuntu12.04配置vsftp本地用户登录
    疑难问题解决备忘录(2)——ubuntu12.04分配swap
  • 原文地址:https://www.cnblogs.com/zzy9669/p/3867516.html
Copyright © 2011-2022 走看看