zoukankan      html  css  js  c++  java
  • The Shortest Path in Nya Graph

    The Shortest Path in Nya Graph

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6492    Accepted Submission(s): 1469


    Problem Description
    This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do not understand a word of this paragraph, just move on.
    The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total.
    You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost.
    Besides, there are M extra edges, each connecting a pair of node u and v, with cost w.
    Help us calculate the shortest path from node 1 to node N.
     
    Input
    The first line has a number T (T <= 20) , indicating the number of test cases.
    For each test case, first line has three numbers N, M (0 <= N, M <= 105) and C(1 <= C <= 103), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers.
    The second line has N numbers li (1 <= li <= N), which is the layer of ith node belong to.
    Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 104), which means there is an extra edge, connecting a pair of node u and v, with cost w.
     
    Output
    For test case X, output "Case #X: " first, then output the minimum cost moving from node 1 to node N.
    If there are no solutions, output -1.
     
    Sample Input
    2 3 3 3 1 3 2 1 2 1 2 3 1 1 3 3 3 3 3 1 3 2 1 2 2 2 3 2 1 3 4
     
    Sample Output
    Case #1: 2 Case #2: 3
    Source
     
    Recommend
    zhuyuanchen520   |   We have carefully selected several similar problems for you:  6032 6031 6030 6029 6028 
    【思路】
    拆点+spfa
    将每一层拆成两个点,至于为什么是两个点,等等下面说QUQ
    我们将设已经将每一层拆成两个点。
    现在我们将点与点,层与点,点与点之间连线。
    可能有点晕~上图.......
    我画图画晕了....下面是个假图,明天补orz
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    using namespace std;
    #define MAXX 200017
    #define inf 0x3f3f3f3f
    struct Edge
    {
        int x,y,z,nxt;
        Edge(int x=0,int y=0,int z=0,int nxt=0):
            x(x),y(y),z(z),nxt(nxt){}
    }edge[MAXX];
    /*inline int read()
    {
        int f=1,x=0;char ch=getchar();
        while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return f*x;
    }*/
    int head[MAXX],sumedge,n,m,vs,t,x,cnt,dis[MAXX],vc,u,v,w,vis[MAXX];
     void add(int x,int y,int z)
    {
        //edge[++sumedge]=Edge(x,y,z,head[x]);
        edge[++sumedge].x=x;edge[sumedge].y=y;edge[sumedge].z=z;edge[sumedge].nxt=head[x];
        head[x]=sumedge;
    }
    
    /*inline void spfa()
    {
        dis[1]=0;vis[1]=1;
        deque <int>q;q.push_back(1);
        while(q.size())
        {
            int now=q.front();q.pop_front();
            vis[now]=0;
            for(int i=head[now];i;i=edge[i].nxt)
            {
                int to=edge[i].y;
                if(dis[to]>dis[now]+edge[i].z)
                {
                    dis[to]=dis[now]+edge[i].z;
                    if(!vis[to])
                    {
                        vis[to]=1;
                        if(q.size()&&dis[to]<dis[q.front()])
                        q.push_front(to);
                        else q.push_back(to);
                    }
                }
            }
        }
    }*/
     void spfa()
    {
        for(int i=1;i<=n;i++)dis[i]=0x3f;
        queue <int> q;
        dis[1]=0;vis[1]=1;
        q.push(1); 
        while(!q.empty())
        {
            int now=q.front();q.pop();
            vis[now]=0;
            for(int i=head[now];i;i=edge[i].nxt)
            {
                int to=edge[i].y;
                if(dis[to]>dis[now]+edge[i].z)
                {
                    dis[to]=dis[now]+edge[i].z;
                    if(!vis[to])
                    {
                        vis[to]=1;
                        q.push(to); 
                    }
                }
            }
        }
    }
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
        //    init();
    //    memset(dis,0x3f,sizeof(dis));
        memset(head,0,sizeof(head));
        memset(vis,0,sizeof(vis)); 
        sumedge=0;
    //    n=read();m=read();vc=read();//出i+n;入i+2*n; 
        scanf("%d%d%d",&n,&m,&vc);
        for(int i=1;i<=n;i++)
        {
            if(i!=n)
            {
            add(i+n,i+2*n+1,vc);
            add(i+n+1,i+2*n,vc);
            }
    //        x=read();
        scanf("%d",&x);
            add(i,n+x,0);
            add(x+2*n,i,0);
        }
        for(int i=1;i<=m;i++)
        {
        //    u=read();v=read();w=read();
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);add(v,u,w);
        } 
            spfa();
            if(dis[n]==inf)printf("Case #%d: -1
    ",++cnt);
            else printf("Case #%d: %d
    ",++cnt,dis[n]);
        }
        return 0;
    }
    #include <cstdio>  
    #include <cmath>  
    #include <cstring>  
    #include <cstdlib>  
    #include <climits>  
    #include <ctype.h>  
    #include <queue>  
    #include <stack>  
    #include <vector>  
    #include <deque>  
    #include <set>  
    #include <map>  
    #include <iostream>  
    #include <algorithm>  
    using namespace std;  
    #define pi acos(-1.0)  
    #define INF 0x3f3f3f3f  
    #define N 200017  
    int n, m, k, c;  
    int Edgehead[N], dis[N];  
    int vv[N], lay[N];  
    struct  
    {  
        int v,w,next;  
    } Edge[20*N];  
    bool vis[N];  
    int cont[N];  
      
    void init()  
    {  
        memset(Edgehead,0,sizeof(Edgehead));  
        memset(vv,0,sizeof(vv));  
    }  
      
    void Addedge(int u,int v,int w)  
    {  
        Edge[k].next = Edgehead[u];  
        Edge[k].w = w;  
        Edge[k].v = v;  
        Edgehead[u] = k++;  
    }  
    int SPFA( int start)  
    {  
        queue<int>Q;  
        while(!Q.empty()) Q.pop();  
        for(int i = 1 ; i <= N ; i++ )  
            dis[i] = INF;  
        dis[start] = 0;  
        //++cont[start];  
        memset(vis,false,sizeof(vis));  
        vis[start] = 1;  
        Q.push(start);  
        while(!Q.empty())//直到队列为空  
        {  
            int u = Q.front();  
            Q.pop();  
            vis[u] = false;  
            for(int i = Edgehead[u] ; i!=-1 ; i = Edge[i].next)//注意  
            {  
                int v = Edge[i].v;  
                int w = Edge[i].w;  
                if(dis[v] > dis[u] + w)  
                {  
                    dis[v] = dis[u]+w;  
                    if( !vis[v] )//防止出现环,也就是进队列重复了  
                    {  
                        Q.push(v);  
                        vis[v] = true;  
                    }  
                    //if(++cont[v] > n)//有负环  
                    //   return -1;  
                }  
            }  
        }  
        return dis[n];  
    }  
    int main()  
    {  
        int u, v, w;  
        int t;  
        int cas = 0;  
        scanf("%d",&t);  
        while(t--)  
        {  
            init();  
            scanf("%d%d%d",&n,&m,&c);  
            k = 1;  
            memset(Edgehead,-1,sizeof(Edgehead));  
              
            for(int i = 1; i <= n; i++)  
            {  
                scanf("%d",&u);//i 在第u层  
                lay[i] = u;  
                vv[u] = 1;  
            }  
              
            for(int i = 1; i < n; i++)  
            {  
                if(vv[i] && vv[i+1])  //两层都出现过点相邻层才建边  
                {  
                    Addedge(n+i,n+i+1,c);  
                    Addedge(n+i+1,n+i,c);  
                }  
            }  
      
            for(int i = 1; i <= n; i++)  //层到点建边  点到相邻层建边  
            {  
                Addedge(n+lay[i],i,0);  
                if(lay[i] > 1)  
                    Addedge(i,n+lay[i]-1,c);  
                if(lay[i] < n)  
                    Addedge(i,n+lay[i]+1,c);  
            }  
      
            for(int i = 1 ; i <= m ; i++ )  
            {  
                scanf("%d%d%d",&u,&v,&w);  
                Addedge(u,v,w);//双向链表  
                Addedge(v,u,w);//双向链表  
            }  
            int s = SPFA(1);//从点1开始寻找最短路  
            if(s == INF)  
            {  
                s = -1;  
            }  
            printf("Case #%d: %d
    ",++cas,s);  
        }  
        return 0;  
    }  
  • 相关阅读:
    转------深入理解--Java按值传递和按引用传递
    排序算法 -------未完待续
    eclipse智能提示报错(to avoid the message, disable the...)
    关于hashcode 和 equals 的内容总结
    随笔 软件设计师 -----------考后总结
    wpf 中用 C# 代码创建 PropertyPath ,以对间接目标进行 Storyboard 动画.
    AvaloniaUI体验
    wpf 通过为DataGrid所绑定的数据源类型的属性设置Attribute改变DataGrid自动生成列的顺序
    wpf 在不同DPI下如何在DrawingVisual中画出清晰的图形
    基于libcurl实现REST风格http/https的get和post
  • 原文地址:https://www.cnblogs.com/zzyh/p/6947336.html
Copyright © 2011-2022 走看看