zoukankan      html  css  js  c++  java
  • Balancing Act(树的重心)


    Balancing Act
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14070   Accepted: 5939

    Description

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
    For example, consider the tree: 

    Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two. 

    For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number. 

    Input

    The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

    Output

    For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

    Sample Input

    1
    7
    2 6
    1 2
    1 4
    4 5
    3 7
    3 1
    

    Sample Output

    1 2

    Source

    【思路】
    求树的重心
    树的中心:删掉这个点后,所形成的连通块最大的最小。
    dp[i]为删掉这个点后最大的连通块的值。
    edge数组开小了runtime erroe 
    【code】
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    int n,x,y,G,sumedge,t;
    int head[20001],size[20001],dad[20001],dp[20001];
    struct Edge
    {
        int x,y,nxt;
        Edge(int x=0,int y=0,int nxt=0):x(x),y(y),nxt(nxt){}
    }edge[40017];
    void add(int x,int y)
    {
        edge[++sumedge]=Edge(x,y,head[x]);
        head[x]=sumedge;
    }
    void init()
    {
        sumedge=0;
        memset(head,0,sizeof(head));
        memset(size,0,sizeof(size));
        memset(dad,0,sizeof(dad));
        memset(dp,0,sizeof(dp));
        scanf("%d",&n);
        for(int i=1;i<n;i++)
        {
            scanf("%d%d",&x,&y);
            add(x,y);
            add(y,x);
        }
    }
    void dfs(int x)
    {
        size[x]=1;
        for(int i=head[x];i;i=edge[i].nxt)
        {
            int v=edge[i].y;
            if(dad[x]!=v)
            {
                dad[v]=x;
                dfs(v);
                size[x]+=size[v];
                dp[x]=max(dp[x],size[v]);//最大的孩子 
            }
        }
        dp[x]=max(dp[x],n-size[x]);//不是子树的那一堆 
    }
    void print()
    {
        int ans=0x7fffff;
        for(int i=1;i<=n;i++)
        if(dp[i]<ans)ans=dp[i],G=i;
        printf("%d %d
    ",G,ans);
    }
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            init();
            dfs(1);
            print();
        }
        return 0;
    }
     
  • 相关阅读:
    $.getJSON异步请求和同步请求
    Jquery中click事件重复执行的问题
    明白JavaScript原型链和JavaScrip继承
    利用canvas对上传图片进行上传前压缩
    webpack打包多html开发案例
    移动端的picker参考vux
    Vue于React特性简单对比(一)
    移动端调试和fiddler移动端抓包使用
    开发过程中的关键思维方法
    js移动端滑块验证解锁组件
  • 原文地址:https://www.cnblogs.com/zzyh/p/7197082.html
Copyright © 2011-2022 走看看