zoukankan      html  css  js  c++  java
  • DSP

    The discrete Fourier transform, or DFT, is the primary tool of digital signal processing. The foundation of the product is the fast Fourier transform (FFT), a method for computing the DFT with reduced execution time. 

    For the input sequence x and its transformed version X (the discrete-time Fourier transform at equally spaced frequencies around the unit circle), the two functions implement the relationships

     

    Note  The MATLAB convention is to use a negative j for the fft function. This is an engineering convention; physics and pure mathematics typically use a positive j.

    fft, with a single input argument, x, computes the DFT of the input vector or matrix. If x is a vector, fft computes the DFT of the vector; if x is a rectangular array, fft computes the DFT of each array column.

    For example, create a time vector and signal:

    t = 0:1/100:10-1/100;                     % Time vector
    x = sin(2*pi*15*t) + sin(2*pi*40*t);      % Signal

    Compute the DFT of the signal and the magnitude and phase of the transformed sequence. Decrease round-off error when computing the phase by setting small-magnitude transform values to zero.

    y = fft(x);                               % Compute DFT of x
    m = abs(y);                               % Magnitude
    y(m<1e-6) = 0;
    p = unwrap(angle(y));                     % Phase

    To plot the magnitude and phase in degrees, type the following commands:

    f = (0:length(y)-1)*100/length(y);        % Frequency vector
    
    subplot(2,1,1)
    plot(f,m)
    title('Magnitude')
    ax = gca;
    ax.XTick = [15 40 60 85];
    
    subplot(2,1,2)
    plot(f,p*180/pi)
    title('Phase')
    ax = gca;
    ax.XTick = [15 40 60 85];

    A second argument to fft specifies a number of points n for the transform, representing DFT length:

    n = 512;
    y = fft(x,n);
    m = abs(y);
    p = unwrap(angle(y));
    f = (0:length(y)-1)*100/length(y);
    
    subplot(2,1,1)
    plot(f,m)
    title('Magnitude')
    ax = gca;
    ax.XTick = [15 40 60 85];
    
    subplot(2,1,2)
    plot(f,p*180/pi)
    title('Phase')
    ax = gca;
    ax.XTick = [15 40 60 85];

    In this case, fft pads the input sequence with zeros if it is shorter than n, or truncates the sequence if it is longer than n. If n is not specified, it defaults to the length of the input sequence. Execution time for fft depends on the length, n, of the DFT it performs; 

    Note  The resulting FFT amplitude is A*n/2, where A is the original amplitude and n is the number of FFT points. This is true only if the number of FFT points is greater than or equal to the number of data samples. If the number of FFT points is less, the FFT amplitude is lower than the original amplitude by the above amount.

    The inverse discrete Fourier transform function ifft also accepts an input sequence and, optionally, the number of desired points for the transform. Try the example below; the original sequence x and the reconstructed sequence are identical (within rounding error).

    t = 0:1/255:1;
    x = sin(2*pi*120*t);
    y = real(ifft(fft(x)));
    
    figure
    plot(t,x-y)

                      Round Error 

     

     Reference

      1. MathWorks

     
  • 相关阅读:
    一个强大的json解析工具类
    android存储路径问题
    android界面的滑动切换功能
    mysql数据库
    【hadoop+spark】搭建spark过程
    【设计模式】行为型01策略模式(strategy patten)
    【java爬虫】网络爬虫思路
    maven_nexus私服搭建
    【需要重新维护】Redis笔记20170811视频
    【工具】java 文本文档txt写出记录工具
  • 原文地址:https://www.cnblogs.com/zzyzz/p/13466622.html
Copyright © 2011-2022 走看看