题目链接:Same GCDs
题意:给你两个数$a$,$m(1 leq a < m leq 10^{10})$,求有多少个$x$满足:$0 leq x < m$且$gcd(a,m)=gcd(a+x,m)$
思路:设$gcd(a,m)=d$,那么问题转换为求多少个$k in [a,a+m)$满足$gcd(k,m)=d$
两边同时除$d$,转换为求有多少$k in [frac{a}{d},frac{a+m}{d})$满足$gcd(k,frac{m}{d})=1$
设$x=frac{a}{d}$,$y=frac{m}{d}$,因为$a<m$,所以显然有$x<y$
问题转换为求有多少$k in [x,x+y)$满足$gcd(k,y)=1$
将区间$[x,x+y)$拆成$[x,y]$和$(y,x+y)$两个区间
- 考虑区间$(y,x+y)$,$gcd(k,y)=gcd(y,k\%y)=gcd(k\%y,y)=1$,因为$k in (y,x+y)$,所以答案为$(0,x)$内与$y$互质的数的个数
- 考虑区间$[x,y]$,因为$gcd(k,y)=1$,所以答案为$[x,y]$内与$y$互质的数的个数
两个区间一合并,答案就是$varphi(y)$,即$varphi(frac{d}{m})$
#include <iostream> #include <algorithm> #include <cstdio> #include <cmath> using namespace std; typedef long long ll; int t; ll a, m; ll gcd(ll a, ll b) { return 0 == b ? a : gcd(b, a % b); } ll euler(ll n) { ll ans = n; for (ll i = 2; i <= sqrt(n); i++) { if (0 == n % i) { ans = ans / i * (i - 1); while (0 == n % i) n /= i; } } if (n > 1) ans = ans / n * (n - 1); return ans; } int main() { scanf("%d", &t); while (t--) { scanf("%lld%lld", &a, &m); printf("%lld ", euler(m / gcd(a, m))); } return 0; }