zoukankan      html  css  js  c++  java
  • Orz_panda cup I题 (xdoj1117) 状压dp

    Orz_panda cup I题 (xdoj1117)  状压dp

    1117: Insert Orz Pandas

    时间限制: 2 Sec  内存限制: 128 MB
    提交: 15  解决: 5
    [提交][状态][讨论版]

    题目描述

    Orz panda emotion is a famous emotion in XDU/ACM-ICPC QQ groups.
    Big Big Xi loves to create new Orz panda emotions.
    Now he has a matrix with n lines and m columns,form n*m cells.
    And he wants to insert some small Orz pandas to this matrix to create a big emotion.
    In each cell of the matrix,he will determine whether put a small Orz panda or not.
    For some reasons,he has some special needs of the emotions:
    1.In the ith column,there must be a[i] small Orz pandas. (1<=i<=m)
    2.In the ith line,assume the total number of Orz pandas is x, x mod 2 must be b[i]. (1<=i<=n)
    For example, if n=2 and m=3,a[1..3]={1,1,1},b[1..2]={1,0}

    An adapted answer can be like this:

    Now, Big Big Xi wants to know there are how many adapted ways to insert the pandas.

     

    输入

    There are multiple test cases (no more than 100,and no more than 10 test cases with large n and m), please process to EOF.

    In each test case,there are two numbers N and M at the first line.(0<n<=10, 0<m<=100)

    Then m lines, the ith line has a number indicates a[i].

    And then n lines,the ith line has a number indicates b[i].

    输出

    One number which is the answer of the question (mod by 1e9+7)

    样例输入

    1 1
    1
    1
    2 3
    1
    1
    1
    1
    0

    样例输出

    1
    4
    很简单的状压dp,题目的数据范围也给了充分的提示,以及状态的处理也没什么麻烦的点,虽然比赛的时候没时间看。。。
    #include<bits/stdc++.h>
    
    using namespace std;
    
    const int maxn=120;
    
    typedef long long ll;
    const ll MOD=1000000007;
    int n,m;
    int tS;
    ll dp[maxn][1<<12];
    int a,b;
    vector<int> line[maxn];
    
    int Cnt(int s)
    {
        int res=0;
        for(int i=0;i<n;i++){
            if(s&(1<<i)) res++;
        }
        return res;
    }
    
    ll DP(int i,int j)
    {
        ll &res=dp[i][j];
        if(~res) return res;
        if(i==0) return res=!j;
        res=0;
        for(int k=0;k<line[i].size();k++){
            res=(res%MOD+DP(i-1,j^line[i][k]))%MOD;
        }
        return res;
    }
    
    int main()
    {
        while(cin>>n>>m){
            for(int i=1;i<=m;i++){
                line[i].clear();
                scanf("%d",&a);
                for(int j=0;j<(1<<n);j++){
                    if(Cnt(j)==a) line[i].push_back(j);
                }
            }
            tS=0;
            for(int i=0;i<n;i++){
                scanf("%d",&b);
                tS|=(1<<i)*b;
            }
            memset(dp,-1,sizeof(dp));
            //cout<<DP(m,tS)<<'
    ';
            printf("%lld
    ",DP(m,tS));
        }
        return 0;
    }
    View Code
    没有AC不了的题,只有不努力的ACMER!
  • 相关阅读:
    java IO选择流的原则及其与IO流相关类的关系
    图形用户界面(graphical user interface)
    泛型
    流、文件及基于文本的应用
    java线程
    多态与方法调用
    在eclipse中使用javap工具反汇编
    java类的访问控制符与其他几个特殊修饰符的总结
    java中几个特殊的类
    @property在内存管理中的参数问题
  • 原文地址:https://www.cnblogs.com/--560/p/4766382.html
Copyright © 2011-2022 走看看