zoukankan      html  css  js  c++  java
  • codeforces#323(div2) C. GCD Table 贪心

    codeforces#323(div2) C. GCD Table  贪心

    C. GCD Table
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    The GCD table G of size n × n for an array of positive integers a of length n is defined by formula

    Let us remind you that the greatest common divisor (GCD) of two positive integers x and y is the greatest integer that is divisor of both xand y, it is denoted as . For example, for array a = {4, 3, 6, 2} of length 4 the GCD table will look as follows:

    Given all the numbers of the GCD table G, restore array a.

    Input

    The first line contains number n (1 ≤ n ≤ 500) — the length of array a. The second line contains n2 space-separated numbers — the elements of the GCD table of G for array a.

    All the numbers in the table are positive integers, not exceeding 109. Note that the elements are given in an arbitrary order. It is guaranteed that the set of the input data corresponds to some array a.

    Output

    In the single line print n positive integers — the elements of array a. If there are multiple possible solutions, you are allowed to print any of them.

    Sample test(s)
    input
    4
    2 1 2 3 4 3 2 6 1 1 2 2 1 2 3 2
    output
    4 3 6 2
    input
    1
    42
    output
    42 
    input
    2
    1 1 1 1
    output
    1 1 

     先统计次数再从大到小删除就行了,每个数会和添加进的数贡献出两个gcd。

    #include<bits/stdc++.h>
    #define REP(i,a,b) for(int i=a;i<=b;i++)
    #define MS0(a) memset(a,0,sizeof(a))
    
    using namespace std;
    
    typedef long long ll;
    const int maxn=1000100;
    const int INF=(1<<29);
    
    int n;
    ll a[maxn];
    map<ll,int> cnt;
    ll s[maxn],sz;
    ll b[maxn],m;
    
    int main()
    {
        while(cin>>n){
            cnt.clear();sz=0;
            REP(i,1,n*n) scanf("%I64d",&a[i]),cnt[a[i]]++,s[++sz]=a[i];
            sort(s+1,s+n*n+1);
            sz=unique(s+1,s+n*n+1)-(s+1);
            m=0;
            for(int i=sz;i>=1;i--){
                ll t=s[i];
                while(cnt[t]){
                    REP(i,1,m) cnt[__gcd(t,b[i])]-=2;
                    cnt[t]--;
                    b[++m]=t;
                }
            }
            REP(i,1,m){
                if(i==m) printf("%I64d
    ",b[i]);
                else printf("%I64d ",b[i]);
            }
        }
        return 0;
    }
    View Code
    没有AC不了的题,只有不努力的ACMER!
  • 相关阅读:
    tomcat配置调优记录
    block,inline和inline-block概念和区别
    清除内外边距
    iddler抓包过程以及fiddler抓包手机添加代理后连不上网解决办法
    ator自动生成mybatis配置和类信息
    纯净版win7旗舰版
    Hibernate缓存机制
    JavaScript初学者应注意的七个细节(转)
    Oracle和Tomcat端口(8080)冲突的解决方法
    关系数据库设计基础--ER图(转)
  • 原文地址:https://www.cnblogs.com/--560/p/4857292.html
Copyright © 2011-2022 走看看