zoukankan      html  css  js  c++  java
  • CF-281C Rectangle Puzzle(凸包+面积)

    题意:https://codeforces.com/problemset/problem/281/C

    就存个模板

      1 #define IOS ios_base::sync_with_stdio(0); cin.tie(0);
      2 #include <cstdio>//sprintf islower isupper
      3 #include <cstdlib>//malloc  exit strcat itoa system("cls")
      4 #include <iostream>//pair
      5 #include <fstream>//freopen("C:\Users\13606\Desktop\Input.txt","r",stdin);
      6 #include <bitset>
      7 //#include <map>
      8 //#include<unordered_map>
      9 #include <vector>
     10 #include <stack>
     11 #include <set>
     12 #include <string.h>//strstr substr strcat
     13 #include <string>
     14 #include <time.h>// srand(((unsigned)time(NULL))); Seed n=rand()%10 - 0~9;
     15 #include <cmath>
     16 #include <deque>
     17 #include <queue>//priority_queue<int, vector<int>, greater<int> > q;//less
     18 #include <vector>//emplace_back
     19 //#include <math.h>
     20 #include <cassert>
     21 #include <iomanip>
     22 //#include <windows.h>//reverse(a,a+len);// ~ ! ~ ! floor
     23 #include <algorithm>//sort + unique : sz=unique(b+1,b+n+1)-(b+1);+nth_element(first, nth, last, compare)
     24 using namespace std;//next_permutation(a+1,a+1+n);//prev_permutation
     25 //******************
     26 clock_t __START,__END;
     27 double __TOTALTIME;
     28 void _MS(){__START=clock();}
     29 void _ME(){__END=clock();__TOTALTIME=(double)(__END-__START)/CLOCKS_PER_SEC;cout<<"Time: "<<__TOTALTIME<<" s"<<endl;}
     30 //***********************
     31 #define rint register int
     32 #define fo(a,b,c) for(rint a=b;a<=c;++a)
     33 #define fr(a,b,c) for(rint a=b;a>=c;--a)
     34 #define mem(a,b) memset(a,b,sizeof(a))
     35 #define pr printf
     36 #define sc scanf
     37 #define ls rt<<1
     38 #define rs rt<<1|1
     39 typedef pair<int,int> PII;
     40 typedef vector<int> VI;
     41 typedef unsigned long long ull;
     42 typedef long long ll;
     43 typedef double db;
     44 const db E=2.718281828;
     45 const db PI=acos(-1.0);
     46 const ll INF=(1LL<<60);
     47 const int inf=(1<<30);
     48 const db ESP=1e-9;
     49 const int mod=(int)1e9+7;
     50 const int N=(int)1e6+10;
     51 
     52 bool zero(double x){
     53     return (x>0?x:-x)<ESP;
     54 }
     55 struct point
     56 {
     57     double x,y;
     58 };
     59 struct line
     60 {
     61     point a,b;
     62 };
     63 //计算 cross product (P1-P0)x(P2-P0)
     64 double xmult(point p1,point p2,point p0){
     65     return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
     66 }
     67 //计算 dot product (P1-P0).(P2-P0)
     68 double dmult(point p1,point p2,point p0){
     69     return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
     70 }
     71 //两点距离
     72 double distance(point p1,point p2){
     73     return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
     74 }
     75 bool isIntersected(point s1,point e1, point s2,point e2){
     76     return    (max(s1.x,e1.x) >= min(s2.x,e2.x))&&
     77               (max(s2.x,e2.x) >= min(s1.x,e1.x))&&
     78               (max(s1.y,e1.y) >= min(s2.y,e2.y))&&
     79               (max(s2.y,e2.y) >= min(s1.y,e1.y))&&
     80               (xmult(s1,s2,e1)*xmult(s1,e1,e2)>0)&&
     81               (xmult(s2,s1,e2)*xmult(s2,e2,e1)>0);
     82 }
     83 point intersection(point u1,point u2,point v1,point v2){
     84     point ret=u1;
     85     double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
     86              /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
     87     ret.x+=(u2.x-u1.x)*t;
     88     ret.y+=(u2.y-u1.y)*t;
     89     return ret;
     90 }
     91 
     92 
     93 //点以原点逆时针旋转α度
     94 point rotate(point p0,double alpha){
     95     alpha=alpha/180*PI;
     96     return {p0.x*cos(alpha)-p0.y*sin(alpha),p0.y*cos(alpha)+p0.x*sin(alpha)};
     97 }
     98 
     99 point Pin[20];
    100 int cmp(point a,point b)  ///<p1,p2,...pm>为对其余点按以p0为中心的极角逆时针排序所得的点集(如果有多个点有相同的极角,除了距p0最远的点外全部移除)
    101 {
    102     if(xmult(a,b,Pin[1])>ESP)
    103         return 1;
    104     if(fabs(xmult(a,b,Pin[1]))<ESP&&distance(b,Pin[1])-distance(a,Pin[1])>ESP)
    105         return 1;
    106     return 0;
    107 }
    108 
    109 point Stack[N];
    110 int top;
    111 void Graham(int n,point p[])
    112 {
    113     top=3;///栈顶在2,因为凸包的前两个点是不会变了
    114     sort(p+2,p+1+n,cmp);
    115     Stack[1]=p[1];///压p0p1p2进栈S
    116     Stack[2]=p[2];
    117     Stack[3]=p[3];
    118     for(int i=4;i<=n;i++){
    119         while(top>=1&&xmult(p[i],Stack[top],Stack[top-1])>ESP){///有了更好的选择
    120             top--;
    121         }
    122         Stack[++top]=p[i];
    123     }
    124 }
    125 double getArea()
    126 {
    127     double sum=fabs(xmult(Stack[2],Stack[3],Stack[1]));
    128     for(int i=3;i<top;i++)
    129         sum+=fabs(xmult(Stack[i],Stack[i+1],Stack[1]));
    130     return sum/2.0;
    131 }
    132 
    133 int main()
    134 {
    135     double w,h,alpha;
    136     sc("%lf%lf%lf",&w,&h,&alpha);
    137     if(alpha==0||alpha==180)
    138     {
    139         pr("%.10lf
    ",w*h);
    140         return 0;
    141     }
    142     if(alpha==90&&w==h)
    143     {
    144         pr("%.10lf
    ",w*h);
    145         return 0;
    146     }
    147     line line1[10];
    148     point p1={-w/2,h/2};
    149     point p2={w/2,h/2};
    150     point p3={w/2,-h/2};
    151     point p4={-w/2,-h/2};
    152     line1[1]={p1,p2};
    153     line1[2]={p2,p3};
    154     line1[3]={p3,p4};
    155     line1[4]={p4,p1};
    156 
    157     line line2[10];
    158     p1=rotate(p1,alpha);
    159     p2=rotate(p2,alpha);
    160     p3=rotate(p3,alpha);
    161     p4=rotate(p4,alpha);
    162     line2[1]={p1,p2};
    163     line2[2]={p2,p3};
    164     line2[3]={p3,p4};
    165     line2[4]={p4,p1};
    166 
    167     int cp=0;
    168     for(int i=1;i<=4;++i)
    169     {
    170         for(int j=1;j<=4;++j)
    171         {
    172             if(isIntersected(line1[i].a,line1[i].b,line2[j].a,line2[j].b))
    173                 Pin[++cp]=intersection(line1[i].a,line1[i].b,line2[j].a,line2[j].b);
    174         }
    175     }
    176 //    for(int i=1;i<=cp;++i)pr("%lf	%lf
    ",Pin[i].x,Pin[i].y);
    177     Graham(cp,Pin);
    178     pr("%.10lf
    ",getArea());
    179     return 0;
    180 }
    181 
    182 /**************************************************************************************/
  • 相关阅读:
    确定机器上装有哪些.net framework版本
    C#中的私有构造函数
    突破vs2008 RTM90天使用限制(转)
    圣诞晚会串词(转)
    C#中ref和out
    登缙云山随笔
    质量百分百
    自然界五种长有人脸像的怪异生物
    C# 静态构造函数
    NET环境下基于Ajax的MVC方案
  • 原文地址:https://www.cnblogs.com/--HPY-7m/p/12687822.html
Copyright © 2011-2022 走看看