zoukankan      html  css  js  c++  java
  • HDU 2639 背包第k优解

    Bone Collector II

    Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4824    Accepted Submission(s): 2514


    Problem Description
    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

    Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

    Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

    If the total number of different values is less than K,just ouput 0.
     
    Input
    The first line contain a integer T , the number of cases.
    Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
     
    Output
    One integer per line representing the K-th maximum of the total value (this number will be less than 231).
     
    Sample Input
    3
    5 10 2
    1 2 3 4 5
    5 4 3 2 1
    5 10 12
    1 2 3 4 5
    5 4 3 2 1
    5 10 16
    1 2 3 4 5
    5 4 3 2 1
     
    Sample Output
    12
    2
    0
     
    Author
    teddy
     
    Source
     题意:
    有n件物品,每件物品有价值和体积,有容量为m的背包,求能够得到的第k大的价值
    代码:
    //以前的dp[V]数组再加一维dp[V]K]表示V状态时第k大的值,当枚举到第i个物品时
    //dp[i][V]=max(dp[i-1][V],dp[i-1][V-v]),当前状态由两个状态转移来的所以前k大的值
    //也是由两个状态的前k大的值转移来的。注意本体价值重复的算一个。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int MAXN=109;
    const int MAXV=1009;
    const int MAXK=39;
    int dp[MAXV][MAXK];
    int val[MAXN],vol[MAXN];
    int N,V,K;
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--){
            scanf("%d%d%d",&N,&V,&K);
            for(int i=1;i<=N;i++) 
                scanf("%d",&val[i]);
            for(int i=1;i<=N;i++)
                scanf("%d",&vol[i]);
            memset(dp,0,sizeof(dp));
            for(int i=1;i<=N;i++){
                for(int j=V;j>=vol[i];j--){
                    int a1=1,a2=1,p1[39],p2[39];
                    for(int c=1;c<=K;c++){
                        p1[c]=dp[j][c];
                        p2[c]=dp[j-vol[i]][c]+val[i];
                    }
                    p1[K+1]=p2[K+1]=-1;
                    int c=0;
                    while(c!=K){
                        int tmp=max(p1[a1],p2[a2]);
                        if(tmp==p1[a1]){
                            a1++;
                            if(tmp!=dp[j][c]) dp[j][++c]=tmp;
                            else if(tmp==0) dp[j][++c]=0;
                        }
                        else if(tmp==p2[a2]){
                            a2++;
                            if(tmp!=dp[j][c]) dp[j][++c]=tmp;
                            else if(tmp==0) dp[j][++c]=0;
                        }
                    }
                    //cout<<i<<" "<<j<<endl;
                    //for(int k=1;k<=K;k++) cout<<dp[j][k]<<" ";
                    //cout<<endl;
                }
            }
            printf("%d
    ",dp[V][K]);
        }
        return 0;
    }
     
  • 相关阅读:
    lintcode254- Drop Eggs- easy
    lintcode462- Total Occurrence of Target- easy
    lintcode63- Search in Rotated Sorted Array II- medium
    lintcode62- Search in Rotated Sorted Array- medium
    lintcode74- First Bad Version- medium
    lintcode75- Find Peak Element- medium
    lintcode160- Find Minimum in Rotated Sorted Array II- medium
    lintcode159- Find Minimum in Rotated Sorted Array- medium
    lintcode447- Search in a Big Sorted Array- medium
    VS2005、vs2008+WinXPDDK+DDKWizard配置驱动开发环境 分类: VC++ 2015-01-05 09:38 448人阅读 评论(0) 收藏
  • 原文地址:https://www.cnblogs.com/--ZHIYUAN/p/6958678.html
Copyright © 2011-2022 走看看