zoukankan      html  css  js  c++  java
  • lightoj1341唯一分解定理

    It's said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a powerful Genie. Here we are concerned about the first mystery.

    Aladdin was about to enter to a magical cave, led by the evil sorcerer who disguised himself as Aladdin's uncle, found a strange magical flying carpet at the entrance. There were some strange creatures guarding the entrance of the cave. Aladdin could run, but he knew that there was a high chance of getting caught. So, he decided to use the magical flying carpet. The carpet was rectangular shaped, but not square shaped.(两个约数不能相等) Aladdin took the carpet and with the help of it he passed the entrance.

    Now you are given the area of the carpet and the length of the minimum possible side of the carpet, your task is to find how many types of carpets are possible. For example, the area of the carpet 12, and the minimum possible side of the carpet is 2, then there can be two types of carpets and their sides are: {2, 6} and {3, 4}.

    Input

    Input starts with an integer T (≤ 4000), denoting the number of test cases.

    Each case starts with a line containing two integers: a b (1 ≤ b ≤ a ≤ 1012) where a denotes the area of the carpet and bdenotes the minimum possible side of the carpet.

    Output

    For each case, print the case number and the number of possible carpets.

    Sample Input

    2

    10 2

    12 2

    Sample Output

    Case 1: 1

    Case 2: 2

    唯一分解定理模板:

     1 LL num_of_divisors(LL n)
     2 {
     3     LL s=1;
     4     if(n==0)
     5         return 0;
     6     for(int j=0;j<w;j++)
     7     {
     8         LL tt=0;
     9         while(n%prime[j]==0)
    10         {
    11             n/=prime[j];
    12             tt++;
    13         }
    14         s*=(tt+1);
    15         if(n==1)
    16             break;
    17     }
    18     if(n>1)
    19         s*=2;
    20     return s;
    21 }
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cmath>
     4 #include <iostream>
     5 #include <algorithm>
     6 using namespace std;
     7 #define maxn 1000005
     8 #define LL long long
     9 LL prime[maxn], p[maxn];
    10 int w;
    11 void find_prime()
    12 {
    13     w=0;
    14     memset(p,0,sizeof(p));
    15     p[0]=p[1]=1;
    16     for(int i=2;i<maxn;i++)
    17     {
    18         if(!p[i])
    19         {
    20             prime[w++]=i;
    21             for(int j=i+i;j<maxn;j+=i)
    22             {
    23                 p[j]=1;
    24             }
    25         }
    26     }
    27 }
    28 LL num_of_divisors(LL n)
    29 {
    30     LL s=1;
    31     if(n==0)
    32         return 0;
    33     for(int j=0;j<w;j++)
    34     {
    35         LL tt=0;
    36         while(n%prime[j]==0)
    37         {
    38             n/=prime[j];
    39             tt++;
    40         }
    41         s*=(tt+1);
    42         if(n==1)
    43             break;
    44     }
    45     if(n>1)
    46         s*=2;
    47     return s;
    48 }
    49 int main()
    50 {
    51     find_prime();
    52     int t;
    53     LL a,b;
    54     while(scanf("%d",&t)!=EOF)
    55     {
    56         for(int i=1;i<=t;i++)
    57         {
    58             scanf("%lld%lld",&a,&b);
    59             printf("Case %d: ",i);
    60             if(b>(LL)sqrt(a))
    61                 printf("0
    ");
    62             else
    63             {
    64                 LL sum=num_of_divisors(a)/2;
    65                 for(int j=1;j<b;j++)
    66                 {
    67                     if(a%j==0)
    68                     {
    69                         sum--;
    70                     }
    71                 }
    72                 printf("%lld
    ",sum);
    73             }
    74         }
    75     }
    76     return 0;
    77 }
  • 相关阅读:
    QF——UI之UIViewController
    QF——UI之几种常用的隐藏键盘的方法
    QF——UI之UIImageView及UIView的形变属性transform
    QF——iOS程序运行原理(APP的生命周期)
    QF——OC中的SEL类型和Block
    QF——OC内存管理详解
    QF——OC的多态,动态绑定及实现原理
    QF——OC中的KVC,KVO
    QF——OC数组
    QF——OC字符串
  • 原文地址:https://www.cnblogs.com/--lr/p/7406093.html
Copyright © 2011-2022 走看看