一类不等式组的解
给定n个变量和m个不等式,每个不等式形如 x[i] - x[j] <= a[k] (0 <= i, j < n, 0 <= k < m, a[k]已知),求 x[n-1] - x[0] 的最大值。例如当n = 4,m = 5,不等式组如图一-1-1所示的情况,求x3 - x0的最大值。
观察x3 - x0的性质,我们如果可以通过不等式的两两加和得到c个形如 x3 - x0 <= Ti 的不等式,那么 min{ Ti | 0 <= i < c } 就是我们要求的x3 - x0的最大值。于是开始人肉,费尽千辛万苦,终于整理出以下三个不等式:
1. (3) x3 - x0 <= 8
2. (2) + (5) x3 - x0 <= 9
3. (1) + (4) + (5) x3 - x0 <= 7
这里的T等于{8, 9, 7},所以min{ T } = 7,答案就是7。的确是7吗?我们再仔细看看,发现的确没有其它情况了。那么问题就是这种方法即使做出来了还是带有问号的,不能确定正确与否,如何系统地解决这类问题呢?
让我们来看另一个问题,这个问题描述相对简单,给定四个小岛以及小岛之间的有向距离,问从第0个岛到第3个岛的最短距离。如图一-1-2所示,箭头指向的线段代表两个小岛之间的有向边,蓝色数字代表距离权值。
这个问题就是经典的最短路问题。由于这个图比较简单,我们可以枚举所有的路线,发现总共三条路线,如下:
1. 0 -> 3 长度为8
2. 0 -> 2 -> 3 长度为7+2 = 9
3. 0 -> 1 -> 2 -> 3 长度为2 + 3 + 2 = 7
最短路为三条线路中的长度的最小值即7,所以最短路的长度就是7。这和上面的不等式有什么关系呢?还是先来看看最短路求解的原理,看懂原理自然就能想到两者的联系了。
1、三角不等式
如果还没有完全理解,我们可以先来看一个简单的情况,如下三个不等式:
B - A <= c (1)
C - B <= a (2)
C - A <= b (3)
我们想要知道C - A的最大值,通过(1) + (2),可以得到 C - A <= a + c,所以这个问题其实就是求min{b, a+c}。将上面的三个不等式按照 三-1 数形结合 中提到的方式建图,如图三-2-1所示。
我们发现min{b, a+c}正好对应了A到C的最短路,而这三个不等式就是著名的三角不等式。将三个不等式推广到m个,变量推广到n个,就变成了n个点m条边的最短路问题了。
2、解的存在性
上文提到最短路的时候,会出现负权圈或者根本就不可达的情况,所以在不等式组转化的图上也有可能出现上述情况,先来看负权圈的情况,如图三-3-1,下图为5个变量5个不等式转化后的图,需要求得是X[t] - X[s]的最大值,可以转化成求s到t的最短路,但是路径中出现负权圈,则表示最短路无限小,即不存在最短路,那么在不等式上的表现即X[t] - X[s] <= T中的T无限小,得出的结论就是 X[t] - X[s]的最大值 不存在。
再来看另一种情况,即从起点s无法到达t的情况,如图三-3-2,表明X[t]和X[s]之间并没有约束关系,这种情况下X[t] - X[s]的最大值是无限大,这就表明了X[t]和X[s]的取值有无限多种。
在实际问题中这两种情况会让你给出不同的输出。综上所述,差分约束系统的解有三种情况:1、有解;2、无解;3、无限多解;
3、最大值 >= 最小值
然后,我们将问题进行一个简单的转化,将原先的"<="变成">=",转化后的不等式如下:
B - A >= c (1)
C - B >= a (2)
C - A >= b (3)
然后求C - A的最小值,类比之前的方法,需要求的其实是max{b, c+a},于是对应的是图三-2-1从A到C的最长路。同样可以推广到n个变量m个不等式的情况。
4、不等式标准化
如果给出的不等式有"<="也有">=",又该如何解决呢?很明显,首先需要关注最后的问题是什么,如果需要求的是两个变量差的最大值,那么需要将所有不等式转变成"<="的形式,建图后求最短路;相反,如果需要求的是两个变量差的最小值,那么需要将所有不等式转化成">=",建图后求最长路。
如果有形如:A - B = c 这样的等式呢?我们可以将它转化成以下两个不等式:
A - B >= c (1)
A - B <= c (2)
再通过上面的方法将其中一种不等号反向,建图即可。
最后,如果这些变量都是整数域上的,那么遇到A - B < c这样的不带等号的不等式,我们需要将它转化成"<="或者">="的形式,即 A - B <= c - 1。