zoukankan      html  css  js  c++  java
  • poj 2115 C Looooops

    http://poj.org/problem?id=2115

    C Looooops
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 34291   Accepted: 9996

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    题意:求解最小的x使得 a + c*x = b (mod 2

    k

    )。变形,用扩展欧几里得解线性同余方程即可
    变形: a+cx=b%(2^k) --> a%2^k+cx%2^k=b%2^k --> cx%2^k=(b-a)%2^k
    假设一个整数y;
    因为 cx%2^k=(cx+y*2^k)%2^k;
    所以 cx%2^k=(cx+y*2^k)%2^k=(b-a)%2^k --> c*x+2

    k

    *y=(b-a)
    最后判断这个线性同余方程是否有解-----线性同余方程有解的充分必要条件是(b-a)%gcd(c,2

    k

    )==0
    无解输出 FOREVER

    PS:POJ对数学函数的数据类型要求特别严格,不符合函数数据类型的都会报错。
    给出几个正确的类型:
    pow(double,int) sqrt(double)
    #include<iostream>
    #include<string.h>
    #include<math.h>
    #define max 0x3f3f3f3f
    #define ll long long
    #define mod 1000000007
    using namespace std;
    ll x,y,r,s;
    void exgcd(ll a, ll b, ll &x, ll &y)    //拓展欧几里得算法
    {
        if(!b) 
            x = 1, y = 0;
        else
        {
            exgcd(b, a % b, y, x);
            y -= x * (a / b);
        }
    }
    
    ll gcd(ll a,ll b)
    {
        return b==0?a:gcd(b,a%b);
    }
    void TY(ll a,ll b,ll c)
    {
        r=gcd(a,b);
        s=b/r;
        exgcd(a,b,x,y);//得到x0
        x=x*c/r;  //得到x1
        x=(x%s+s)%s;  //得到最小正整数解
    }
    int main()
    {
        ll a,b,c;
        int k;
        while(scanf("%lld%lld%lld%d",&a,&b,&c,&k))
        {
            if(a==0&&b==0&&c==0&&k==0)
                break;
            else
            {
                if((b-a)%gcd(c,pow(2.0,k))!=0)
                    printf("FOREVER
    ");
                else
                {
                    TY(c,pow(2.0,k),b-a);
                    printf("%lld
    ",x);
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    dev gridcontrol设置复选框列,和按数据选择行
    Django——三种方式上传文件/数据 (form ajax json)
    Django——ajax简单使用
    Django——ajax介绍,django内置序列化器
    阿里云oss 上传文件的两种方式(本地路径上传远程链接上传)
    easywechat 网页授权登录
    19。删除链表倒数第N个节点
    142环形链表II
    141环形链表
    701二叉搜索树中的插入操作
  • 原文地址:https://www.cnblogs.com/-citywall123/p/10694160.html
Copyright © 2011-2022 走看看