Description
Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在nn个城市设有业务,设这些城市分别标记为(0)到(n−1),一共有(m)种航线,每种航线连接两个城市,并且航线有一定的价格。
Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多(k)种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?
Input
数据的第一行有三个整数,(n,m,k),分别表示城市数,航线数和免费乘坐次数。
第二行有两个整数,(s,t),分别表示他们出行的起点城市编号和终点城市编号。
接下来有(m)行,每行三个整数,(a,b,c),表示存在一种航线,能从城市(a)到达城市(b),或从城市(b)到达城市(a),价格为(c)。
Output
只有一行,包含一个整数,为最少花费
分析
明显,此题为最短路问题,但是考虑到可以免费搭乘(即直接通过一条边无需费用.)
这种问题有一个较官方的名字 分层图最短路问题
分层图最短路是指在可以进行分层图的图上解决最短路问题.
是不是听起来就很nb?
具体分层图是啥,我也不知道
一般模型:
在图上,有(k)次机会可以直接通过一条边,问起点与终点之间的最短路径.
很明显,这道题是一个裸的分层图最短路问题 (貌似这类问题都挺裸的 emm
解法
我们设
(dis[i][j])代表到达(i)用了(j)次免费机会的最小花费.
(vis[i][j])代表到达(i)用了(j)次免费机会的情况是否出现过.
对于某条路径我们可以选择使用机会,也可以选择不使用机会.
讨论这两种情况即可
#include<cstdio>
#include<queue>
#include<cstring>
#define R register
#define N 20008
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(s>'9' or s<'0'){if(s=='-')f=-1;s=getchar();}
while(s>='0' and s<='9'){x=x*10+s-'0';s=getchar();}
x*=f;
}
int head[N],tot,n,m,s,t,k;
int dis[N][15],ans=2147483647;
bool vis[N][15];
struct cod{int u,v,w;}edge[N*6+8];
inline void add(int x,int y,int z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
edge[tot].w=z;
head[x]=tot;
}
struct coc{
int u,d,used;
bool operator <(const coc&a) const
{
return d>a.d;
}
};
inline void dijkstra()
{
memset(dis,127,sizeof dis);
dis[s][0]=0;
priority_queue<coc>q;
q.push((coc){s,0,0});
while(!q.empty())
{
int u=q.top().u,now=q.top().used;
q.pop();
if(vis[u][now])continue;
vis[u][now]=true;
for(R int i=head[u];i;i=edge[i].u)
{
if(now<k and !vis[edge[i].v][now+1] and dis[edge[i].v][now+1]>dis[u][now])//当前路径,使用一次免费机会.注意判断 now<k
{
dis[edge[i].v][now+1]=dis[u][now];
q.push((coc){edge[i].v,dis[edge[i].v][now+1],now+1});
}
if(!vis[edge[i].v][now] and dis[edge[i].v][now]>dis[u][now]+edge[i].w)//当前路径,不使用免费机会
{
dis[edge[i].v][now]=dis[u][now]+edge[i].w;
q.push((coc){edge[i].v,dis[edge[i].v][now],now});
}
}
}
}
int main()
{
in(n),in(m),in(k);
in(s),in(t);
s++;t++;//这里个人习惯不同.我选择记录编号为1~n
for(R int i=1,x,y,z;i<=m;i++)
{
in(x),in(y),in(z);
x++;y++;
add(x,y,z);
add(y,x,z);
}
dijkstra();//直接跑dijkstra
for(R int i=0;i<=k;i++)
ans=min(ans,dis[t][i]);//到达t我们需要对使用免费机会的情况枚举.取min
printf("%d",ans);
}