zoukankan      html  css  js  c++  java
  • Andrew Ng机器学习 三:Multi-class Classification and Neural Networks

    背景:识别手写数字,给一组数据集ex3data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个样例),会有5000*1的矩阵y(表示每个样例所代表的数据)。现在让你拟合出一个模型,使得这个模型能很好的预测其它手写的数字。

    (注意:我们用10代表0(矩阵y也是这样),因为Octave的矩阵没有0行)

     

    我们随机可视化100个样例,可以看到如下图所示:

    一:多类别分类(Multi-class Classification)

      在这我们使用逻辑回归多类别分类去拟合数据。在这组数据,总共有10类别,我们可以将它们分成10个2元分类问题,最后我们选择一个让$h_ heta^i(x)$最大的$i$。

       逻辑回归脚本ex3.m:

    %% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all
    
    %  Instructions
    %  ------------
    %
    %  This file contains code that helps you get started on the
    %  linear exercise. You will need to complete the following functions
    %  in this exericse:
    %
    %     lrCostFunction.m (logistic regression cost function)
    %     oneVsAll.m
    %     predictOneVsAll.m
    %     predict.m
    %
    %  For this exercise, you will not need to change any code in this file,
    %  or any other files other than those mentioned above.
    %
    
    %% Initialization
    clear ; close all; clc
    
    %% Setup the parameters you will use for this part of the exercise
    input_layer_size  = 400;  % 20x20 Input Images of Digits
    num_labels = 10;          % 10 labels, from 1 to 10
                              % (note that we have mapped "0" to label 10)
    
    %% =========== Part 1: Loading and Visualizing Data =============
    %  We start the exercise by first loading and visualizing the dataset.
    %  You will be working with a dataset that contains handwritten digits.
    %
    
    % Load Training Data
    fprintf('Loading and Visualizing Data ...
    ')
    
    load('ex3data1.mat'); % training data stored in arrays X, y
    m = size(X, 1);
    
    % Randomly select 100 data points to display
    rand_indices = randperm(m);
    sel = X(rand_indices(1:100), :);
    
    displayData(sel);
    
    fprintf('Program paused. Press enter to continue.
    ');
    pause;
    
    %% ============ Part 2a: Vectorize Logistic Regression ============
    %  In this part of the exercise, you will reuse your logistic regression
    %  code from the last exercise. You task here is to make sure that your
    %  regularized logistic regression implementation is vectorized. After
    %  that, you will implement one-vs-all classification for the handwritten
    %  digit dataset.
    %
    
    % Test case for lrCostFunction
    fprintf('
    Testing lrCostFunction() with regularization');
    
    theta_t = [-2; -1; 1; 2];
    X_t = [ones(5,1) reshape(1:15,5,3)/10];
    y_t = ([1;0;1;0;1] >= 0.5);
    lambda_t = 3;
    [J grad] = lrCostFunction(theta_t, X_t, y_t, lambda_t);
    
    fprintf('
    Cost: %f
    ', J);
    fprintf('Expected cost: 2.534819
    ');
    fprintf('Gradients:
    ');
    fprintf(' %f 
    ', grad);
    fprintf('Expected gradients:
    ');
    fprintf(' 0.146561
     -0.548558
     0.724722
     1.398003
    ');
    
    fprintf('Program paused. Press enter to continue.
    ');
    pause;
    %% ============ Part 2b: One-vs-All Training ============
    fprintf('
    Training One-vs-All Logistic Regression...
    ')
    
    lambda = 0.1;
    [all_theta] = oneVsAll(X, y, num_labels, lambda); %10*401,每行表示标签i的拟合参数
    
    fprintf('Program paused. Press enter to continue.
    ');
    pause;
    
    
    %% ================ Part 3: Predict for One-Vs-All ================
    
    pred = predictOneVsAll(all_theta, X);
    
    fprintf('
    Training Set Accuracy: %f
    ', mean(double(pred == y)) * 100);
    ex3.m

      1,正则化逻辑回归代价函数(忽略偏差项$ heta_0$的正则化):

      $J( heta)=-frac{1}{m}sum_{i=1}^{m}[y^{(i)}log(h_ heta(x^{(i)}))+(1-y^{(i)})log(1-h_{ heta}(x^{(i)}))]+frac{lambda }{2m}sum_{j=1}^{n} heta_j^{2}$

      

      2,梯度下降:

      不带学习速率(给之后fmincg作为梯度下降使用):

        $frac{partial J( heta)}{partial heta_0}=frac{1}{m}sum_{i=1}^{m}[(h_ heta(x^{(i)})-y^{(i)})x^{(i)}_0]$  for $j=0$

        $frac{partial J( heta)}{partial heta_j}=(frac{1}{m}sum_{i=1}^{m}[(h_ heta(x^{(i)})-y^{(i)})x^{(i)}_j])+frac{lambda }{m} heta_j $ for $jgeq 1$

       

      代价函数代码:

    function [J, grad] = lrCostFunction(theta, X, y, lambda)
    %LRCOSTFUNCTION Compute cost and gradient for logistic regression with 
    %regularization
    %   J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
    %   theta as the parameter for regularized logistic regression and the
    %   gradient of the cost w.r.t. to the parameters. 
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    %
    % Hint: The computation of the cost function and gradients can be
    %       efficiently vectorized. For example, consider the computation
    %
    %           sigmoid(X * theta)
    %
    %       Each row of the resulting matrix will contain the value of the
    %       prediction for that example. You can make use of this to vectorize
    %       the cost function and gradient computations. 
    %
    % Hint: When computing the gradient of the regularized cost function, 
    %       there're many possible vectorized solutions, but one solution
    %       looks like:
    %           grad = (unregularized gradient for logistic regression)
    %           temp = theta; 
    %           temp(1) = 0;   % because we don't add anything for j = 0  
    %           grad = grad + YOUR_CODE_HERE (using the temp variable)
    %
        h=sigmoid(X*theta);
        theta(1,1)=0;
        J=(-(y')*log(h)-(1-y)'*log(1-h))/m+lambda/2/m*sum(power(theta,2));%代价函数
        grad=(X'*(h-y))./m+(lambda/m).*theta; %不带学习速率的梯度下降
    
    
    
    
    
    
    % =============================================================
    
    grad = grad(:);
    
    end
    lrCostFunction.m

      拟合参数:

    function [all_theta] = oneVsAll(X, y, num_labels, lambda)
    %ONEVSALL trains multiple logistic regression classifiers and returns all
    %the classifiers in a matrix all_theta, where the i-th row of all_theta 
    %corresponds to the classifier for label i
    %   [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
    %   logistic regression classifiers and returns each of these classifiers
    %   in a matrix all_theta, where the i-th row of all_theta corresponds 
    %   to the classifier for label i
    
    % Some useful variables
    m = size(X, 1); %5000
    n = size(X, 2); %400
    
    % You need to return the following variables correctly 
    all_theta = zeros(num_labels, n + 1); %10*401
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X]; %5000*401
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: You should complete the following code to train num_labels
    %               logistic regression classifiers with regularization
    %               parameter lambda. 
    %
    % Hint: theta(:) will return a column vector.
    %
    % Hint: You can use y == c to obtain a vector of 1's and 0's that tell you
    %       whether the ground truth is true/false for this class.
    %
    % Note: For this assignment, we recommend using fmincg to optimize the cost
    %       function. It is okay to use a for-loop (for c = 1:num_labels) to
    %       loop over the different classes.
    %
    %       fmincg works similarly to fminunc, but is more efficient when we
    %       are dealing with large number of parameters.
    %
    % Example Code for fmincg:
    %
    %     % Set Initial theta
    %     initial_theta = zeros(n + 1, 1);
    %     
    %     % Set options for fminunc
    %     options = optimset('GradObj', 'on', 'MaxIter', 50);
    % 
    %     % Run fmincg to obtain the optimal theta
    %     % This function will return theta and the cost 
    %     [theta] = ...
    %         fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
    %                 initial_theta, options);
    %
    
    
    for c=1:num_labels,
        initial_theta = zeros(n + 1, 1); %401*1
        options = optimset('GradObj', 'on', 'MaxIter', 50);
        [theta] = ...
                 fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
                     initial_theta, options);
        all_theta(c,:)=theta; %给标签c拟合参数
    end;
    
    
    % =========================================================================
    
    
    end
    oneVsAll.m

     

      3, 预测:我们根据我们拟合好的参数$ heta$去预测样例。我们可以看到我们使用逻辑回归去拟合对类别分类问题的准确率为95%。我们可以增加更多的特征,让我们的准确率更高,但因为过高的维度,最后我们可能要花费昂贵的训练代价。

    function p = predictOneVsAll(all_theta, X)
    %PREDICT Predict the label for a trained one-vs-all classifier. The labels 
    %are in the range 1..K, where K = size(all_theta, 1). 
    %  p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
    %  for each example in the matrix X. Note that X contains the examples in
    %  rows. all_theta is a matrix where the i-th row is a trained logistic
    %  regression theta vector for the i-th class. You should set p to a vector
    %  of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
    %  for 4 examples) 
    
    m = size(X, 1);
    num_labels = size(all_theta, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    %               your learned logistic regression parameters (one-vs-all).
    %               You should set p to a vector of predictions (from 1 to
    %               num_labels).
    %
    % Hint: This code can be done all vectorized using the max function.
    %       In particular, the max function can also return the index of the 
    %       max element, for more information see 'help max'. If your examples 
    %       are in rows, then, you can use max(A, [], 2) to obtain the max 
    %       for each row.
    %       
    
    
    temp = X*all_theta'; %(5000,401)*(401*10)
    [maxx, p] = max(temp,[],2); %返回每行的最大值
    
    
    % =========================================================================
    
    
    end
    predictOneVsAll.m

     

     二:神经网络(Neural Networks)

       这里已经拟合好三层网络的参数$Theta1$和$Theta2$,只需加载ex3weights.mat就可以了。

      中间层(hidden layer)$Theta1$的size为25x401,输出层( output layer)$Theta2$的size为10x26。

      根据前向传播算法(Feedforward Propagation)来去预测数据,

      $z^{(2)}=Theta^{(1)}x$

      $a^{(2)}=g(z^{(2)})$

      $z^{(3)}=Theta^{(2)}a^{(2)}$

      $a^{(3)}=g(z^{(3)})=h_ heta(x)$

      

    function p = predict(Theta1, Theta2, X)
    %PREDICT Predict the label of an input given a trained neural network
    %   p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
    %   trained weights of a neural network (Theta1, Theta2)
    
    % Useful values
    m = size(X, 1);
    num_labels = size(Theta2, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    %               your learned neural network. You should set p to a 
    %               vector containing labels between 1 to num_labels.
    %
    % Hint: The max function might come in useful. In particular, the max
    %       function can also return the index of the max element, for more
    %       information see 'help max'. If your examples are in rows, then, you
    %       can use max(A, [], 2) to obtain the max for each row.
    %
    
    
     X=[ones(m,1) X]; %而外增加一列偏差单位
     item=sigmoid(X*Theta1'); %计算a^{(2)}
     item=[ones(m,1) item];
     item=sigmoid(item*Theta2');
     [a,p]=max(item,[],2); %每行最大值
    
    
    % =========================================================================
    
    
    end
    predict.m

      最后我们可以看到,预测的准确率为97.5%

    我的便签:做个有情怀的程序员。

      

  • 相关阅读:
    主线程到子线程的相互切换
    IOS通过OTA部署App
    IOS应用之间调用
    静态库详解
    ObjectC的函数调用机制详解消息
    iOS6新特征:参考资料和示例汇总
    杭电acm2025
    杭电acm2051
    杭电acm1009
    杭电acm2099
  • 原文地址:https://www.cnblogs.com/-jiandong/p/11916824.html
Copyright © 2011-2022 走看看