zoukankan      html  css  js  c++  java
  • HDU 4576 Robot 概率DP 水题

                          Robot

    Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
    Total Submission(s): 3851    Accepted Submission(s): 1246


    Problem Description
    Michael has a telecontrol robot. One day he put the robot on a loop with n cells. The cells are numbered from 1 to n clockwise.



    At first the robot is in cell 1. Then Michael uses a remote control to send m commands to the robot. A command will make the robot walk some distance. Unfortunately the direction part on the remote control is broken, so for every command the robot will chose a direction(clockwise or anticlockwise) randomly with equal possibility, and then walk w cells forward.
    Michael wants to know the possibility of the robot stopping in the cell that cell number >= l and <= r after m commands.
     
    Input
    There are multiple test cases. 
    Each test case contains several lines.
    The first line contains four integers: above mentioned n(1≤n≤200) ,m(0≤m≤1,000,000),l,r(1≤l≤r≤n).
    Then m lines follow, each representing a command. A command is a integer w(1≤w≤100) representing the cell length the robot will walk for this command.  
    The input end with n=0,m=0,l=0,r=0. You should not process this test case.
     
    Output
    For each test case in the input, you should output a line with the expected possibility. Output should be round to 4 digits after decimal points.
     
    Sample Input
    3 1 1 2
    1
    5 2 4 4
    1
    2
    0 0 0 0
     
    Sample Output
    0.5000
    0.2500
     
    Source

     

    题意:给出一个环,上面分成n个区域,分别编号为1~n,有一个指针,刚开始的时候指向1的位置

    现在有m个操作,每一个操作输入一个w,指针转动w个单位,顺时针转,和逆时针转的概率都是0.5,

    现在问m个操作后,指针指向区间[l,r]的概率是多少

    dp[i][j]表示第i个命令后,指针指向区域j的概率

    这里命令数m很大,而我们递推的时候只需要保存前面一个的状态,所以i%2,节省空间。

     1 #include<cstdio>
     2 #include<cstring>
     3 
     4 using namespace std;
     5 
     6 double dp[2][210];
     7 
     8 int main()
     9 {
    10     int n,m,l,r;
    11     while(scanf("%d%d%d%d",&n,&m,&l,&r))
    12     {
    13         if(!n&&!m&&!l&&!r)
    14             break;
    15         memset(dp,0,sizeof dp);
    16         dp[0][1]=1.0;
    17         int w;
    18         int a,b;
    19         for(int i=1;i<=m;i++)
    20         {
    21             scanf("%d",&w);
    22             for(int j=1;j<=n;j++)
    23             {
    24                 a=j-w;
    25                 if(a<1)
    26                     a+=n;
    27                 b=j+w;
    28                 if(b>n)
    29                     b-=n;
    30                 dp[i%2][j]=dp[(i-1)%2][a]*0.5+dp[(i-1)%2][b]*0.5;
    31             }
    32         }
    33         double ans=0.0;
    34         int mm=m%2;
    35         for(int i=l;i<=r;i++)
    36             ans+=dp[mm][i];
    37 
    38         printf("%.4f
    ",ans);
    39     }
    40     return 0;
    41 }
    View Code
  • 相关阅读:
    PLSQL游标
    SqlHelper助手
    机房重构前奏——三层转七层
    应用运筹管理经济
    C++——宏观把控
    操作系统——宏观把控
    .NET总结一
    深复制与浅复制
    设计模式之结构型
    设计模式之一对多
  • 原文地址:https://www.cnblogs.com/-maybe/p/4677669.html
Copyright © 2011-2022 走看看