zoukankan      html  css  js  c++  java
  • HDU 4336 Card Collector 概率DP 好题

                        Card Collector

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3141    Accepted Submission(s): 1512
    Special Judge


    Problem Description
    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award. 

    As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.
     
    Input
    The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks. 

    Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.
     
    Output
    Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

    You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.
     
    Sample Input
    1
    0.1
    2
    0.1 0.4
     
    Sample Output
    10.000
    10.500
     
    Source
     
     
     
     
    题意:有n种卡片,你每次买一包零食,里面可能会有一张卡片或者没有卡片
    给出里面出现每种卡片的概率
    问:集齐这n种卡片需要买的零食的数量的期望值
     
    状态压缩DP
     
    因为n<=20,用一个数的二进制的0~n-1位表示一种状态,0表示还没有拿到第i种卡片,1表示拿到了。
    dp[i]表示在i这种状态拿到所有卡片的期望
    则所有卡片都拿到的状态是:all=(1<<n)-1
    则dp[all]=0.0
    目的:求出dp[0]
     
    转移方程:
    设j表示比i多拿到一种卡的状态,k表示多拿的这张卡是哪一种
    则:
    dp[i]=所有的(dp[j]+1.0)*p[k]+(1.0-所有的p[k]的和)*(dp[i]+1)
    因为我在i这个状态,买了一包零食,如果里面没有卡片,或者里面的卡片是我已经拥有的卡片,那么我还是i这个状态
    化简:dp[i]=所有的dp[j]*p[k]+所有的p[k]+(1.0-所有的p[k])+(1.0-所有的p[k])*dp[i]
         =[ ( 所有的dp[j]*p[k] ) + 1.0 ] / ( 所有的p[k]的和 )
    对状态从all-1到0循环一遍就ok了
     
     
     1 #include<cstdio>
     2 #include<cstring>
     3 
     4 using namespace std;
     5 
     6 double p[23];
     7 double dp[1<<22];
     8 
     9 int main()
    10 {
    11     int n;
    12     while(~scanf("%d",&n))
    13     {
    14         for(int i=0;i<n;i++)
    15         {
    16             scanf("%lf",&p[i]);
    17         }
    18 
    19         dp[(1<<n)-1]=0.0;
    20         for(int i=(1<<n)-2;i>=0;i--)
    21         {
    22             dp[i]=0.0;
    23             double cnt=0.0;
    24             for(int j=0;j<n;j++)
    25             {
    26                 if((i&1<<j)==0)
    27                 {
    28                     dp[i]+=dp[i|(1<<j)]*p[j];
    29                     cnt+=p[j];
    30                 }
    31             }
    32             dp[i]=(dp[i]+1.0)/cnt;
    33         }
    34         printf("%f
    ",dp[0]);
    35     }
    36     return 0;
    37 }
    View Code
     
     
     

     

  • 相关阅读:
    【spring 事务注解配置】事务回滚
    myisam 和 innodb 对比
    mysql replace into用法详细说明
    [nginx] 配置
    【lucene】中文分词
    Lucene 4.9 document的简单应用
    Spring事务配置的五种方式
    Open-Drain与Push-Pull
    HDMI中的AVmute是什么功能
    在Keil uv5里面添加STC元器件库,不影响其他元件
  • 原文地址:https://www.cnblogs.com/-maybe/p/4680334.html
Copyright © 2011-2022 走看看