zoukankan      html  css  js  c++  java
  • SPOJ Query on a tree 树链剖分 水题

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

    We will ask you to perfrom some instructions of the following form:

    • CHANGE i ti : change the cost of the i-th edge to ti
      or
    • QUERY a b : ask for the maximum edge cost on the path from node a to node b

    Input

    The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

    For each test case:

    • In the first line there is an integer N (N <= 10000),
    • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between ab of cost c (c<= 1000000),
    • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
    • The end of each test case is signified by the string "DONE".

    There is one blank line between successive tests.

    Output

    For each "QUERY" operation, write one integer representing its result.

    Example

    Input:
    1
    
    3
    1 2 1
    2 3 2
    QUERY 1 2
    CHANGE 1 3
    QUERY 1 2
    DONE
    
    Output:
    1
    3




    模板题
    2种操作:
    1.把第i条边的边权更改为v
    2.查询路径u,v中最大的边权


    注意:是边权,所以查询时候u,v的lca不能包括进来
    因为lca所表示的边权并没有在u,v的路径中

    树链剖分+线段树(单点更新,区间查询)
    线段树连lazy都不用


    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    
    #define LL long long
    #define debug printf("eeeeeeeeeeeeeeeeeeeee")
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    
    using namespace std;
    
    const int maxn=1e4+10;
    const int inf=0x3f3f3f3f;
    
    int dep[maxn];
    int son[maxn];
    int siz[maxn];
    int top[maxn];
    int fa[maxn];
    int chg[maxn];
    int rev[maxn];
    int cost[maxn];
    int e[maxn][3];
    
    struct Edge
    {
        int to,next;
    };
    Edge edge[maxn<<1];
    int head[maxn];
    int tot;
    
    int ma[maxn<<2];
    
    void init()
    {
        memset(head,-1,sizeof head);
        tot=0;
    }
    
    void addedge(int u,int v)
    {
        edge[tot].to=v;
        edge[tot].next=head[u];
        head[u]=tot++;
    }
    
    void solve(int );
    
    int main()
    {
        int test;
        scanf("%d",&test);
        while(test--){
            int n;
            init();
            scanf("%d",&n);
            for(int i=1;i<n;i++){
                scanf("%d %d %d",&e[i][0],&e[i][1],&e[i][2]);
                addedge(e[i][0],e[i][1]);
                addedge(e[i][1],e[i][0]);
            }
            solve(n);
        }
        return 0;
    }
    
    void dfs0(int u,int pre)
    {
        fa[u]=pre;
        siz[u]=1;
        dep[u]=dep[pre]+1;
        for(int i=head[u];~i;i=edge[i].next){
            int v=edge[i].to;
            if(v==pre)
                continue;
            dfs0(v,u);
            siz[u]+=siz[v];
            if(son[u]==-1 || siz[v]>siz[son[u]])
                son[u]=v;
        }
    }
    
    void dfs1(int u,int tp)
    {
        top[u]=tp;
        chg[u]=++tot;
        rev[tot]=u;
        if(son[u]==-1)
            return ;
        dfs1(son[u],tp);
        for(int i=head[u];~i;i=edge[i].next){
            int v=edge[i].to;
            if(v==fa[u] || v==son[u])
                continue;
            dfs1(v,v);
        }
    }
    
    void pushup(int rt)
    {
        ma[rt]=max(ma[rt<<1],ma[rt<<1|1]);
    }
    
    void build(int l,int r,int rt)
    {
        if(l==r){
            ma[rt]=cost[rev[l]];
            return ;
        }
        int m=(l+r)>>1;
        build(lson);
        build(rson);
        pushup(rt);
    }
    
    void update(int p,int add,int l,int r,int rt)
    {
        if(l==r){
            ma[rt]=add;
            return ;
        }
        int m=(l+r)>>1;
        if(p<=m)
            update(p,add,lson);
        else
            update(p,add,rson);
        pushup(rt);
    }
    
    int query(int L,int R,int l,int r,int rt)
    {
        if(L<=l && R>=r){
            return ma[rt];
        }
        int m=(l+r)>>1;
        int ret=-inf;
        if(L<=m)
            ret=max(ret,query(L,R,lson));
        if(R>m)
            ret=max(ret,query(L,R,rson));
        return ret;
    }
    
    int query_path(int u,int v)
    {
        int ret=-inf;
        while(top[u]!=top[v]){
            if(dep[top[u]]<dep[top[v]])
                swap(u,v);
            ret=max(ret,query(chg[top[u]],chg[u],1,tot,1));
            u=fa[top[u]];
        }
        if(dep[u]<dep[v])
            swap(u,v);
        ret=max(ret,query(chg[v]+1,chg[u],1,tot,1));
        return ret;
    }
    
    void solve(int n)
    {
        memset(dep,0,sizeof dep);
        memset(son,-1,sizeof son);
        memset(cost,0,sizeof cost);
        dfs0(1,1);
        tot=0;
        dfs1(1,1);
        for(int i=1;i<n;i++){
            if(dep[e[i][0]]>dep[e[i][1]])
                swap(e[i][0],e[i][1]);
            cost[e[i][1]]=e[i][2];
        }
        build(1,tot,1);
        char str[15];
        while(scanf("%s",str)){
            if(str[0]=='D')
                break;
            int u,v;
            scanf("%d %d",&u,&v);
            if(str[0]=='Q'){
                printf("%d
    ",query_path(u,v));
            }
            else{
                update(chg[e[u][1]],v,1,tot,1);
            }
        }
        return ;
    }









  • 相关阅读:
    结构体运算符重载出错分析
    已知空间三个点,解算外接圆圆心坐标,C++编程实现
    IQueryable与IEnumberable的区别
    Asp.net MVC中关于@Html标签Label、Editor使用
    MVC 基架不支持 Entity Framework 6 或更高版本 即 NuGet的几个小技巧
    MVC下拉框Html.DropDownList 和DropDownListFor 的常用方法
    js jq封装ajax方法
    httpSession的正确理解
    vs未能解析此远程名称: 'api.nuget.org'
    未能加载文件或程序集“EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
  • 原文地址:https://www.cnblogs.com/-maybe/p/4883363.html
Copyright © 2011-2022 走看看