参考:http://eric-gcm.iteye.com/blog/1807468
file1.txt:
2 32 654 32 15 756 65223
file2.txt:
5956 22 650 92
file3.txt:
26 54 6
JAVA代码:
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class Sort { // map将输入中的value化成IntWritable类型,作为输出的key public static class Map extends Mapper<Object, Text, IntWritable, IntWritable> { private static IntWritable data = new IntWritable(); // 实现map函数 public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); data.set(Integer.parseInt(line)); context.write(data, new IntWritable(1)); } } // reduce将输入中的key复制到输出数据的key上, // 然后根据输入的value-list中元素的个数决定key的输出次数 // 用全局linenum来代表key的位次 public static class Reduce extends Reducer<IntWritable, IntWritable, IntWritable, IntWritable> { private static IntWritable linenum = new IntWritable(1); // 实现reduce函数 public void reduce(IntWritable key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { for (IntWritable val : values) { context.write(linenum, key); linenum = new IntWritable(linenum.get() + 1); } } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); // 这句话很关键 conf.set("mapred.job.tracker", "172.16.11.74:9001"); String[] ioArgs = new String[] { "sort_in", "sort_out" }; String[] otherArgs = new GenericOptionsParser(conf, ioArgs) .getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: Data Sort <in> <out>"); System.exit(2); } Job job = new Job(conf, "Data Sort"); job.setJarByClass(Sort.class); // 设置Map和Reduce处理类 job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); // 设置输出类型 job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(IntWritable.class); // 设置输入和输出目录 FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
运行结果:
1 2 2 6 3 15 4 22 5 26 6 32 7 32 8 54 9 92 10 650 11 654 12 756 13 5956 14 65223
具体打包运行步骤:
参考上一篇博文:http://www.cnblogs.com/-wangjiannan/p/3590324.html
知识点:
MapReduce的默认排序规则是按照key值进行排序的。
如果key为封装int的IntWritable类型,那么MapReduce按照数字大小对key排序,
如果key为封装为String的Text类型,那么MapReduce按照字典顺序对字符串排序。
代码理解:
map阶段:
1. String line = value.toString();
实现的map方法中,针对文本的一行(line)处理,遍历每行的代码框架内部实现了
2. context.write(data, new IntWritable(1));
每一行:key是data(强转成IntWritable类型的 line),value是IntWritable类型的 1
3. 所有行默认排序好了,而且是按递增顺序的
若有重复的行,那么data对应的value合并成一个集合{Values}({IntWritable类型的 1+})
reduce阶段:
1. reduce(IntWritable key, Iterable<IntWritable> values, Context context)
每一行:key是map阶段后的data,values是data对应的集合{Values}
2. for (IntWritable val : values) { context.write(linenum, key); linenum = new IntWritable(linenum.get() + 1); }
这行代码的作用是输出: 行号 data
同时:行号递增,若有重复的行,则换行输出