zoukankan      html  css  js  c++  java
  • python WordCloud 实现词云

     简单示例

    from matplotlib import pyplot as plt
    from wordcloud import WordCloud
    
    filename = "text.txt" #文本路径
    with open(filename,encoding="utf-8") as f:
        data = f.read()
        font = r'C:WindowsFontsFZSTK.TTF'
        wc = WordCloud(font_path=font,  # 如果是中文必须要添加字体
                       background_color='white',
                       width=1000,
                       height=800,
                       ).generate(data)
        wc.to_file('ss.png')  # 保存图片
        plt.imshow(wc)  # 用plt显示图片
        plt.axis('off')  # 不显示坐标轴
        plt.show()  # 显示图片
        # wc.to_file('img.jpg') #保存图片

    wordcloud.WordCloud类

    class wordcloud.WordCloud(font_path=None, width=400, height=200, margin=2, ranks_only=None, prefer_horizontal=0.9,mask=None, scale=1, color_func=None, max_words=200, min_font_size=4, stopwords=None, random_state=None,background_color='black', max_font_size=None, font_step=1, mode='RGB', relative_scaling=0.5, regexp=None, collocations=True,colormap=None, normalize_plurals=True)
    参数
    font_path : string //字体路径,需要展现什么字体就把该字体路径+后缀名写上,如:font_path = '黑体.ttf' width : int (default=400) //输出的画布宽度,默认为400像素 height : int (default=200) //输出的画布高度,默认为200像素 prefer_horizontal : float (default=0.90) //词语水平方向排版出现的频率,默认 0.9 (所以词语垂直方向排版出现频率为 0.1 ) mask : nd-array or None (default=None) //如果参数为空,则使用二维遮罩绘制词云。如果 mask 非空,设置的宽高值将被忽略,遮罩形状被 mask 取代。除全白(#FFFFFF)的部分将不会绘制,其余部分会用于绘制词云。如:bg_pic = imread('读取一张图片.png'),背景图片的画布一定要设置为白色(#FFFFFF),然后显示的形状为不是白色的其他颜色。可以用ps工具将自己要显示的形状复制到一个纯白色的画布上再保存,就ok了。 scale : float (default=1) //按照比例进行放大画布,如设置为1.5,则长和宽都是原来画布的1.5倍。 min_font_size : int (default=4) //显示的最小的字体大小 font_step : int (default=1) //字体步长,如果步长大于1,会加快运算但是可能导致结果出现较大的误差。 max_words : number (default=200) //要显示的词的最大个数 stopwords : set of strings or None //设置需要屏蔽的词,如果为空,则使用内置的STOPWORDS background_color : color value (default=”black”) //背景颜色,如background_color='white',背景颜色为白色。 max_font_size : int or None (default=None) //显示的最大的字体大小 mode : string (default=”RGB”) //当参数为“RGBA”并且background_color不为空时,背景为透明。 relative_scaling : float (default=.5) //词频和字体大小的关联性 color_func : callable, default=None //生成新颜色的函数,如果为空,则使用 self.color_func regexp : string or None (optional) //使用正则表达式分隔输入的文本 collocations : bool, default=True //是否包括两个词的搭配 colormap : string or matplotlib colormap, default=”viridis” //给每个单词随机分配颜色,若指定color_func,则忽略该方法。 函数: fit_words(frequencies) //根据词频生成词云 generate(text) //根据文本生成词云 generate_from_frequencies(frequencies[, ...]) //根据词频生成词云 generate_from_text(text) //根据文本生成词云 process_text(text) //将长文本分词并去除屏蔽词(此处指英语,中文分词还是需要自己用别的库先行实现,使用上面的 fit_words(frequencies) ) recolor([random_state, color_func, colormap]) //对现有输出重新着色。重新上色会比重新生成整个词云快很多。 to_array() //转化为 numpy array to_file(filename) //输出到文件

    在不同形状黑白图像上显示

     

    import jieba
    from matplotlib import pyplot as plt
    from wordcloud import WordCloud
    from PIL import Image
    import numpy as np
    
    
    font = r'C:WindowsFontsFZSTK.TTF'#字体路径
    
    text = (open(r'text.txt', 'r', encoding='utf-8')).read()
    cut = jieba.cut(text)  # 分词
    string = ' '.join(cut) # 将词语连接起来,以空格为连接词
    img = Image.open(r'background.jpg')  # 打开背景图片
    img_array = np.array(img)  # 将图片装换为数组
    stopword = ['xa0']  # 设置停止词,也就是你不想显示的词
    wc = WordCloud(
        background_color='white',
        width=1000,
        height=800,
        mask=img_array,
        font_path=font,
    )
    wc.generate_from_text(string)  # 绘制图片
    plt.imshow(wc)
    plt.axis('off')
    plt.show()  # 显示图片
    wc.to_file(r'new.png')  #保存图片

     

  • 相关阅读:
    递归函数 二分查找
    内置函数
    迭代器 生成器 推导式
    装饰器函数的有用信息
    函数名 闭包 装饰器
    动态参数 命名空间
    C#_LINQ(LINQ to Entities)
    C#_MVC 自定义AuthorizeAttribute实现权限管理
    C#_MVC3之使用Authorize简单的验证登录(一)
    C#_MVC_分页update
  • 原文地址:https://www.cnblogs.com/-wenli/p/11396215.html
Copyright © 2011-2022 走看看