zoukankan      html  css  js  c++  java
  • Wet Shark and Bishops(思维)

    Today, Wet Shark is given n bishops on a 1000 by 1000 grid. Both rows and columns of the grid are numbered from 1 to 1000. Rows are numbered from top to bottom, while columns are numbered from left to right.

    Wet Shark thinks that two bishops attack each other if they share the same diagonal. Note, that this is the only criteria, so two bishops may attack each other (according to Wet Shark) even if there is another bishop located between them. Now Wet Shark wants to count the number of pairs of bishops that attack each other.

    Input
    The first line of the input contains n (1 ≤ n ≤ 200 000) — the number of bishops.

    Each of next n lines contains two space separated integers xi and yi (1 ≤ xi, yi ≤ 1000) — the number of row and the number of column where i-th bishop is positioned. It’s guaranteed that no two bishops share the same position.

    Output
    Output one integer — the number of pairs of bishops which attack each other.

    Example
    Input
    5
    1 1
    1 5
    3 3
    5 1
    5 5
    Output
    6
    Input
    3
    1 1
    2 3
    3 5
    Output
    0
    Note
    In the first sample following pairs of bishops attack each other: (1, 3), (1, 5), (2, 3), (2, 4), (3, 4) and (3, 5). Pairs (1, 2), (1, 4), (2, 5) and (4, 5) do not attack each other because they do not share the same diagonal.

    **好题,大致意思是判断两点是否在同一个对角线上。看数据很容易就超时,所以不考虑点,而是考虑对角线,考虑在同一个对角线上有几个点,几个点可以构成几组对角线。
    首先来说在同一主对角线上,x-y相同,在同一副对角线上x+y相同。那么我们认为加和相同的点和差相同的点视为在同一对角线上,由此可以知道一个对角线上有几个点。
    假如有n个点那就有n+n-1+n-2+…..+1个对角线。
    结果就显而易见,(n*n-1)/2
    **

    #include<stdio.h>
    int k1[2000+10]={0};
    int k2[2000+10]={0};
    
    int main()
    {
        int n;
        scanf("%d",&n);
        int x, y;
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&x,&y);
            k1[x+y]++;
            k2[x-y+1000]++;
        }
        long long sum=0;
        for(int i=0;i<2000;i++)
        {
            if(k1[i])
            sum+=(k1[i]*(k1[i]-1))/2;
            if(k2[i])
            sum+=(k2[i]*(k2[i]-1))/2;
        }
        printf("%d
    ",sum);
        return 0;
    }
  • 相关阅读:
    poj 2411 Mondriaan's Dream 骨牌铺放 状压dp
    zoj 3471 Most Powerful (有向图)最大生成树 状压dp
    poj 2280 Islands and Bridges 哈密尔顿路 状压dp
    hdu 3001 Travelling 经过所有点(最多两次)的最短路径 三进制状压dp
    poj 3311 Hie with the Pie 经过所有点(可重)的最短路径 floyd + 状压dp
    poj 1185 炮兵阵地 状压dp
    poj 3254 Corn Fields 状压dp入门
    loj 6278 6279 数列分块入门 2 3
    VIM记事——大小写转换
    DKIM支持样本上传做检测的网站
  • 原文地址:https://www.cnblogs.com/-xiangyang/p/9220275.html
Copyright © 2011-2022 走看看