zoukankan      html  css  js  c++  java
  • Sliding Window POJ

    Description

    An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
    The array is [1 3 -1 -3 5 3 6 7], and k is 3.
    Window positionMinimum valueMaximum value
    [1  3  -1] -3  5  3  6  7  -1 3
     1 [3  -1  -3] 5  3  6  7  -3 3
     1  3 [-1  -3  5] 3  6  7  -3 5
     1  3  -1 [-3  5  3] 6  7  -3 5
     1  3  -1  -3 [5  3  6] 7  3 6
     1  3  -1  -3  5 [3  6  7] 3 7

    Your task is to determine the maximum and minimum values in the sliding window at each position. 

    Input

    The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

    Output

    There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values. 

    Sample Input

    8 3
    1 3 -1 -3 5 3 6 7
    

    Sample Output

    -1 -3 -3 -3 3 3
    3 3 5 5 6 7
     1 #include <cstdio>
     2 #include <vector>
     3 #include <cstring>
     4 using namespace std;
     5 const int MAXN=1e6+10;
     6 int Q[MAXN],a[MAXN];
     7 vector<int>MAX;
     8 vector<int>MIN;
     9 int n,m;
    10 void get_MIN()
    11 {
    12     int head=1,tail=1;
    13     Q[tail]=1;
    14     for (int i = 1; i <=n ; ++i) {
    15         while(head<=tail&&a[i]<a[Q[tail]]) tail--;
    16         Q[++tail]=i;
    17         while(head<=tail&&Q[head]<i-m+1) head++;
    18         if(i>=m)
    19         MIN.push_back(a[Q[head]]);
    20     }
    21 }
    22 
    23 void get_MAX()
    24 {
    25     int head,tail;
    26     head=1;tail=1;
    27     Q[tail]=1;
    28     for (int i = 1; i <=n ; ++i) {
    29         while(head<=tail&&a[i]>a[Q[tail]]) tail--;
    30         Q[++tail]=i;
    31         while(head<=tail&&Q[head]<i-m+1)
    32             head++;
    33         if(i>=m)
    34         MAX.push_back(a[Q[head]]);
    35     }
    36 }
    37 
    38 int main()
    39 {
    40     scanf("%d%d",&n,&M);
    41     for (int i = 1; i <=n ; ++i) {
    42         scanf("%d",&a[i]);
    43     }
    44     get_MIN();
    45     for (int i = 0; i <MIN.size() ; ++i) {
    46         printf("%d ",MIN[i]);
    47     }
    48     printf("
    ");
    49     get_MAX();
    50     memset(Q,0, sizeof(Q));
    51     for (int i = 0; i <MAX.size() ; ++i) {
    52         printf("%d ",MAX[i]);
    53 
    54     }
    55     printf("
    ");
    56     return 0;
    57 }
    View Code
  • 相关阅读:
    最小生成树之算法记录【prime算法+Kruskal算法】【模板】
    [LC] 90. Subsets II
    [LC] 19. Remove Nth Node From End of List
    [LC] 125. Valid Palindrome
    [LC] 127. Word Ladder
    [LC] 102. Binary Tree Level Order Traversal
    [LC] 5. Longest Palindromic Substring
    [LC] 167. Two Sum II
    [LC] 437. Path Sum III
    [LC] 94. Binary Tree Inorder Traversal
  • 原文地址:https://www.cnblogs.com/-xiangyang/p/9394619.html
Copyright © 2011-2022 走看看