zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 10 D. Nested Segments [离散化+树状数组]

    time limit per test2 seconds
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    You are given n segments on a line. There are no ends of some segments that coincide. For each segment find the number of segments it contains.
    Input
    The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of segments on a line.
    Each of the next n lines contains two integers li and ri ( - 109 ≤ li < ri ≤ 109) — the coordinates of the left and the right ends of the i-th segment. It is guaranteed that there are no ends of some segments that coincide.
    Output
    Print n lines. The j-th of them should contain the only integer aj — the number of segments contained in the j-th segment.
    Examples
    Input
    Copy
    4
    1 8
    2 3
    4 7
    5 6
    Output
    Copy
    3
    0
    1
    0
    Input
    Copy
    3
    3 4
    1 5
    2 6
    Output
    Copy
    0
    1
    1

    题解:题意大概就是给你几个区间,让你求某个区间内包含有的其他区间的个数.

    哈哈,这道题我还天真的用暴力去写,当然,tle在第15个样例,

    暴力不行,那我们就换其他方法,这里要用到 离散化 + 树状数组.

    这里只要离散化一个端点即可,这里我是离散化了右端点.

    然后把区间按左端点降序排序,位于上面的区间的区间肯定不包含在其底下的区间,所以我们接下来只要看右端点即可,

    接下来就是要树状数组了,lowbit要来了,然后统计一下包含的右端点即可,具体看代码

    #include <bits/stdc++.h>
    const int N=2e5+5;
    using namespace std;
    struct seg{
        int l,r,id;
    };
    seg a[N];
    int ans[N];
    int d[N];
    int sum[N];
    bool comp(seg a,seg b){
        return a.l>b.l;
    }
    int lowbit(int x){
        return x&-x;
    }
    int query(int x){
        int ans=0;
        while(x>0){
            ans+=sum[x];
            x-=lowbit(x);
        }
        return ans;
    }
    int cnt=0;
    void update(int x){
        while(x<=cnt){
            sum[x]++;
            x+=lowbit(x);
        }
    }
    int main()
    {
        int n;
    
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%d%d",&a[i].l,&a[i].r);
            d[++cnt]=a[i].r;
            a[i].id=i;
        }
        sort(d+1,d+1+n);
        sort(a+1,a+1+n,comp);
        for(int i=1;i<=n;i++){
            int pos=lower_bound(d+1,d+1+n,a[i].r)-d;
            ans[a[i].id]=query(pos);
            update(pos);
        }
        for(int i=1;i<=n;i++) printf("%d
    ",ans[i]);
        //cout << "Hello world!" << endl;
        return 0;
    }
    
  • 相关阅读:
    python之路_初始mysql数据库
    python之路_并发编程之IO模型
    python之路_并发编程之协程
    python之路_并发编程之多线程2
    python之路_并发编程之多线程1
    python之路_并发编程之多进程3
    python之路_并发编程之多进程2
    python之路_并发编程之多进程1
    python之路_基于udp协议编程
    python之路_基于tcp协议的粘包现象
  • 原文地址:https://www.cnblogs.com/-yjun/p/10424502.html
Copyright © 2011-2022 走看看