zoukankan      html  css  js  c++  java
  • Codeforces 652C Foe Pairs 【dp】

    C. Foe Pairs
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output
    
    You are given a permutation p of length n. Also you are given m foe pairs (ai, bi) (1 ≤ ai, bi ≤ n, ai ≠ bi).
    
    Your task is to count the number of different intervals (x, y) (1 ≤ x ≤ y ≤ n) that do not contain any foe pairs. So you shouldn't count intervals (x, y) that contain at least one foe pair in it (the positions and order of the values from the foe pair are not important).
    
    Consider some example: p = [1, 3, 2, 4] and foe pairs are {(3, 2), (4, 2)}. The interval (1, 3) is incorrect because it contains a foe pair (3, 2). The interval (1, 4) is also incorrect because it contains two foe pairs (3, 2) and (4, 2). But the interval (1, 2) is correct because it doesn't contain any foe pair.
    Input
    
    The first line contains two integers n and m (1 ≤ n, m ≤ 3·105) — the length of the permutation p and the number of foe pairs.
    
    The second line contains n distinct integers pi (1 ≤ pi ≤ n) — the elements of the permutation p.
    
    Each of the next m lines contains two integers (ai, bi) (1 ≤ ai, bi ≤ n, ai ≠ bi) — the i-th foe pair. Note a foe pair can appear multiple times in the given list.
    Output
    
    Print the only integer c — the number of different intervals (x, y) that does not contain any foe pairs.
    
    Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
    Examples
    Input
    
    4 2
    1 3 2 4
    3 2
    2 4
    
    Output
    
    5
    
    Input
    
    9 5
    9 7 2 3 1 4 6 5 8
    1 6
    4 5
    2 7
    7 2
    2 7
    
    Output
    
    20
    
    Note
    
    In the first example the intervals from the answer are (1, 1), (1, 2), (2, 2), (3, 3) and (4, 4).

    题意:给你1-n的一个排列和m组数对,问有多少区间不包含任意一个数对。

    思路:倒着做,用总方案数去掉那些不符合的就是结果。先预处理数对的区间[l[i],r[i]] (1<=i<=m),考虑以第i个数开始的区间,我们需要的信息的是min(r[j]) l[j]>=i,这样不合法的区间数有n−dp[i]+1。
    用dp[i]=min(r[j]) l[j]>=i,这样我们到着做一遍就把dp全求出来了。
    dp[i]表示i到右边最近一个与它可构成数对的那个数的位置。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int N=3e5+5;
    int f[N],pos[N];
    int main()
    {
        int n,m; scanf("%d%d",&n,&m);
        int u,v;
        for(int i=1;i<=n;i++){
            scanf("%d",&v);
            pos[v]=i;f[i]=n+1;
        }
        ll ans=1ll*n*(n-1)/2+n;
        for(int i=0;i<m;i++){
            scanf("%d%d",&u,&v);
            if(pos[u]>pos[v])swap(u,v);
            f[pos[u]]=min(f[pos[u]],pos[v]);
        }
        for(int i=n-1;i>=1;i--)f[i]=min(f[i],f[i+1]);
        for(int i=1;i<n;i++){
            ans-=(n-f[i]+1);
        }
        cout<<ans;
        return 0;
    }
  • 相关阅读:
    【剑指Offer-循环和递归】面试题10.4:矩形覆盖
    【剑指Offer-循环和递归】面试题10.3:变态跳台阶
    【剑指Offer-面试案例】面试题66:把字符串转为整数
    【剑指Offer-发散思维能力】面试题66:构建乘积数组
    【剑指Offer-发散思维能力】面试题65:不用加减乘除做加法
    【剑指Offer-发散思维能力】面试题64:求1+2+...+n
    【剑指Offer-抽象建模能力】面试题62:圆圈中最后剩下的数字
    【剑指Offer-抽象建模能力】面试题61:扑克牌中的顺子
    【剑指Offer-知识迁移能力】面试题59:滑动窗口的最大值
    【剑指Offer-知识迁移能力】面试题58.2:左旋转字符串
  • 原文地址:https://www.cnblogs.com/01world/p/5651229.html
Copyright © 2011-2022 走看看