zoukankan      html  css  js  c++  java
  • MapReduce第一个项目

    参考自林子雨大数据教学:http://dblab.xmu.edu.cn/blog/hadoop-build-project-using-eclipse/

    整个过程按照实验要求

    第一步创建文件夹;放入文本文件,填入一下数据。

    1000481 2010-04-04 16:54:31
    1001597 2010-04-07 15:07:52
    1001560 2010-04-07 15:08:27
    1001368 2010-04-08 08:20:30
    1002061 2010-04-08 16:45:33
    1003289 2010-04-12 10:50:55
    1003290 2010-04-12 11:57:35
    1003292 2010-04-12 12:05:29
    1002420 2010-04-14 15:24:12
    1001679 2010-04-14 19:46:04
    1010675 2010-04-14 15:23:53
    1002429 2010-04-14 17:52:45
    1002427 2010-04-14 19:35:39
    1003326 2010-04-20 12:54:44
    1002420 2010-04-15 11:24:49
    1002422 2010-04-15 11:35:54
    1003066 2010-04-15 11:43:01
    1003055 2010-04-15 11:43:06
    1010183 2010-04-15 11:45:24
    1002422 2010-04-15 11:45:49
    1003100 2010-04-15 11:45:54
    1003094 2010-04-15 11:45:57
    1003064 2010-04-15 11:46:04
    1010178 2010-04-15 16:15:20
    1003101 2010-04-15 16:37:27
    1003103 2010-04-15 16:37:05
    1003100 2010-04-15 16:37:18
    1003066 2010-04-15 16:37:31
    1003103 2010-04-15 16:40:14
    1003100 2010-04-15 16:40:16

     将Linux的文件上传到HDFS/mapreduce1/in的目录下

     

    下载: hadoop2x-eclipse-plugin

    将 release 中的 hadoop-eclipse-kepler-plugin-2.6.0.jar 复制到 Eclipse 安装目录的 plugins 文件夹中运行 eclipse -clean

     

    启动 Eclipse 后就可以在左侧的Project Explorer中看到 DFS Locations

     

    第一步:选择 Window 菜单下的 Preference。

     

    窗体的左侧会多出 Hadoop Map/Reduce 选项,点击此选项,选择 Hadoop 的安装目录

     

    第二步:切换 Map/Reduce 开发视图,选择 Window 菜单下选择 Open Perspective -> Other(CentOS 是 Window -> Perspective -> Open Perspective -> Other),弹出一个窗体,从中选择 Map/Reduce 选项即可进行切换。

     

    第三步:建立与 Hadoop 集群的连接,点击 Eclipse软件右下角的 Map/Reduce Locations 面板,在面板中单击右键,选择 New Hadoop Location。

     Location name  随便起一个名字

     

    1. 运行测试代码WordCount

    新建项目

     

    在src文件夹下将hadoop安装目录中的配置文件复制过来

    core-site.xml          hdfs-site.xml         log4j.properties

    右击项目刷新(refresh)出现以下文件

     

    创建Demo类

    package org.apache.hadoop.examples;
    
    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    public class Demo {
    public static void main(String[] args) throws IOException,ClassNotFoundException,InterruptedException {
    Job job = Job.getInstance();
    job.setJobName("WordCount");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(doMapper.class);
    job.setReducerClass(doReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    Path in = new Path("hdfs://localhost:9000/mymapreduce1/in/buyer_favorite1");
    Path out = new Path("hdfs://localhost:9000/mymapreduce1/out");
    FileInputFormat.addInputPath(job,in);
    FileOutputFormat.setOutputPath(job,out);
    System.exit(job.waitForCompletion(true)?0:1);
    }
    public static class doMapper extends Mapper<Object,Text,Text,IntWritable>{
    public static final IntWritable one = new IntWritable(1);
    public static Text word = new Text();
    @Override
    protected void map(Object key, Text value, Context context)
    throws IOException,InterruptedException {
    StringTokenizer tokenizer = new StringTokenizer(value.toString(),"  ");
    word.set(tokenizer.nextToken());
    context.write(word,one);
                }
    }
    public static class doReducer extends Reducer<Text,IntWritable,Text,IntWritable>
        {
    private IntWritable result = new IntWritable();
    @Override
    protected void reduce(Text key,Iterable<IntWritable> values,Context context)
    throws IOException,InterruptedException
        {
    int sum = 0;
    for (IntWritable value : values)
                {
    sum += value.get();
                }
    result.set(sum);
    context.write(key,result);
            }
        }
    }

    运行截图:

  • 相关阅读:
    【HDU 2507】【ACM-ICPC算法基础训练教程 题1-6】 迷瘴(贪心)
    【算法】Floyd-Warshall算法(任意两点间的最短路问题)(判断负圈)
    【读书笔记】2015年考研英语二真题翻译(帮你克服艰难之路的真理+熟路效应)
    visio给任意图形进行填充
    scanf清除缓存区
    macbook安装并破解Clion2018(Pycharm也一样)
    mac电脑对ntfs格式硬盘进行写操作(简单说就是向ntfs硬盘拷贝东西)
    查找mac下腾讯视频下载地址
    PyQt5初级教程(一)
    迷途指针
  • 原文地址:https://www.cnblogs.com/0518liu/p/11768587.html
Copyright © 2011-2022 走看看