zoukankan      html  css  js  c++  java
  • Pat1128:N Queens Puzzle

    1128. N Queens Puzzle (20)

    时间限制
    300 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)

    Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1, Q2, ..., QN), where Qi is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.

      
    Figure 1
      
    Figure 2

    Input Specification:

    Each input file contains several test cases. The first line gives an integer K (1 < K <= 200). Then K lines follow, each gives a configuration in the format "N Q1 Q2 ... QN", where 4 <= N <= 1000 and it is guaranteed that 1 <= Qi <= N for all i=1, ..., N. The numbers are separated by spaces.

    Output Specification:

    For each configuration, if it is a solution to the N queens problem, print "YES" in a line; or "NO" if not.

    Sample Input:
    4
    8 4 6 8 2 7 1 3 5
    9 4 6 7 2 8 1 9 5 3
    6 1 5 2 6 4 3
    5 1 3 5 2 4
    
    Sample Output:
    YES
    NO
    NO
    YES

    思路

    N皇后问题,只不过题目仅要求判断是否是同一行和同一对角线。
    对于每一个输入的数nums[i]。
    1.判断是否和前面的皇后棋子是否在同一行,即输入的第i个数和前i-1个数是否相同。
    2.判断是否在同意对角线上,即第i个数和前i-1个数的斜率是否相同,即abs(nums[i] - nums[k]) == abs(i - k) ( 0 <= k < i)是否成立。

    代码
    #include<iostream>
    #include<vector>
    #include<math.h>
    using namespace std;
    int main()
    {
       int K;
       while(cin >> K)
       {
           for(int i = 0;i < K;i++)
           {
               int N;
               cin >> N;
               vector<int> nums(N);
               bool isSolution = true;
               for(int j = 0;j < N;j++)
               {
                   cin >> nums[j];
                   for(int k = 0;k < j;k++)
                   {
                     if(nums[k] == nums[j] || abs(nums[j] - nums[k]) == abs(j - k))
                     {
                         isSolution = false;
                         break;
                     }
                   }
               }
               if(isSolution)
                    cout << "YES" << endl;
                   else
                    cout << "NO" << endl;
           }
       }
    }
  • 相关阅读:
    JavaScript初学者应注意的七个细节
    KindEditor 编辑器使用方法
    有关 JavaScript 的 10 件让人费解的事情
    能说明你的Javascript技术很烂的五个原因
    分享10个便利的HTML5/CSS3框架
    现在就使用HTML5的十大原因
    你应该知道的Node.js扩展模块——Hashish
    C++ Tip: How To Get Array Length | Dev102.com
    MPI for Python — MPI for Python v1.3 documentation
    http://construct.readthedocs.org/en/latest/basics.html
  • 原文地址:https://www.cnblogs.com/0kk470/p/7725577.html
Copyright © 2011-2022 走看看