zoukankan      html  css  js  c++  java
  • PAT1021:Deepest Root

    1021. Deepest Root (25)

    时间限制
    1500 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

    Output Specification:

    For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

    Sample Input 1:
    5
    1 2
    1 3
    1 4
    2 5
    
    Sample Output 1:
    3
    4
    5
    
    Sample Input 2:
    5
    1 3
    1 4
    2 5
    3 4
    
    Sample Output 2:
    Error: 2 components

    思路

    二次dfs
    1.第一次dfs确定图是否连通,如果连通找到最深的那个点first(多个就取最先被找到的),没有输出题目要求的错误信息。
    2.第二次dfs重置所有状态,然后从first开始dfs,找到的所有的最深的点即是题目要求的节点,依次插入一个set容器中(每次插入会自动排序)。

    3.输出set中的所有元素就行。

    代码
    #include<iostream>
    #include<vector>
    #include<set>
    using namespace std;
    vector<vector<int>> graph;
    vector<int> highestNodes;
    vector<bool> visits(10005,false);
    int maxheight = 1;
    set<int> results;
    
    void dfs(int root,int height)
    {
        visits[root] = true;
        if(height >= maxheight)
        {
            if(height > maxheight)
            {
               highestNodes.clear();
               maxheight = height;
            }
            highestNodes.push_back(root);
        }
        for(int i = 0;i < graph[root].size();i++)
        {
            if(!visits[graph[root][i]])
             dfs(graph[root][i],height + 1);
        }
    }
    
    inline void resetVisits(const int n)
    {
        for(int i = 0;i <= n;i++)
            visits[i] = false;
    }
    
    int main()
    {
       int N;
       while(cin >> N)
       {
           //input
           graph.resize(N + 1);
           for(int i = 1;i < N;i++)
           {
               int a,b;
               cin >> a >> b;
               graph[b].push_back(a);
               graph[a].push_back(b);
           }
    
           int cnt = 0;
           //handle
           int first = -1; //最高的节点之一
           for(int i = 1;i <= N;i++)
           {
               if(!visits[i])
               {
                   cnt++;
                   dfs(i,1);
                   if( i == 1)
                   {
                       for(int j = 0;j < highestNodes.size();j++)
                       {
                           results.insert(highestNodes[j]);
                           if(j == 0)
                             first = highestNodes[j];
                       }
                   }
               }
           }
    
           if(cnt > 1)
             cout << "Error: "<< cnt <<" components" << endl;
           else
           {
             highestNodes.clear();
             maxheight = 1;
             resetVisits(N);
             dfs(first,1);
             for(int i = 0;i < highestNodes.size();i++ )
                results.insert(highestNodes[i]);
             for(auto it = results.begin();it != results.end();it++)
                cout << *it << endl;
           }
       }
    }
    
    
    

      

     
  • 相关阅读:
    从头认识java-17.4 具体解释同步(2)-具体解释竞争条件
    ProgressBar的indeterminateDrawable属性在安卓6.0上的问题
    Android开源-NineOldAndroids
    面向对象语言的多态性问题
    Android Data Binding代码实践(告别findViewById)(四)
    【c语言】将正数变成相应的负数,将负数变成相应的正数
    Android 消息处理源代码分析(2)
    怎样学习嵌入式软件
    C++ regex
    C++中两个类相互include的问题
  • 原文地址:https://www.cnblogs.com/0kk470/p/8064583.html
Copyright © 2011-2022 走看看