zoukankan      html  css  js  c++  java
  • 后缀数组(笔记)

    dalao的博客,讲的很详细

    倍增法:设当前已知各后缀的前 (2^k) 个字符的相对大小关系(即排名数组 (rank)), 于是只要用 ((rank[i], rank[i + 2 ^k])) 进行双关键字排序就可以得到前 (2^{k+1}) 个字符的相对大小关系

    跟没有也差不多的upd:

    注意 (tp[i]) 的意义:按 (rank[i + 2 ^ k]) 为关键字排序后的第 (i) 个后缀,然后由于基数排序的稳定性,再次按照 (rank[i]) 排序时相当于进行了双关键字排序

    代码调了一个小时才知道原来还有指针引用这种玩意

    #include<cstdio>
    #include<cstring>
    using namespace std;
    
    const int MAXN = 1000010;
    
    int t1[MAXN], t2[MAXN], sa[MAXN], tax[MAXN];
    char str[MAXN];
    
    inline void Swap(int* &a, int* &b){//丧病的复合类型
        int *t = a; a = b, b = t;
    }
    
    void getSA(char s[], int len){
        int p = 0, crd;
        int *rak = t1, *tp = t2;
        crd = 122; 
        for (int i = 1; i <= len; ++i) rak[i] = s[i], tp[i] = i;
        for (int i = 0; i <= crd; ++i) tax[i] = 0;
        for (int i = 1; i <= len; ++i) ++tax[rak[i]];
        for (int i = 1; i <= crd; ++i) tax[i] += tax[i - 1];
        for (int i = len; i >= 1; --i) sa[tax[rak[tp[i]]]--] = tp[i];
        for (int w = 1; p != len; w <<= 1, crd = p){
            p = 0;
            for (int i = len - w + 1; i <= len; ++i)
                tp[++p] = i;
            for (int i = 1; i <= len; ++i)
                if (sa[i] > w)
                    tp[++p] = sa[i] - w;
            for (int i = 0; i <= crd; ++i) tax[i] = 0;
            for (int i = 1; i <= len; ++i) ++tax[rak[i]];
            for (int i = 1; i <= crd; ++i) tax[i] += tax[i - 1];
            for (int i = len; i >= 1; --i) sa[tax[rak[tp[i]]]--] = tp[i];
            Swap(rak, tp);
            rak[sa[1]] = p = 1;
            for (int i = 2; i <= len; ++i)
                rak[sa[i]] = (tp[sa[i]] == tp[sa[i - 1]] && tp[sa[i] + w] == tp[sa[i - 1] + w]) ? p : ++p;
        }
    }
    
    int main(){
        scanf("%s", str + 1);
        int slen = strlen(str + 1);
        getSA(str, slen);
        for (int i = 1; i <= slen; ++i)
            printf("%d ", sa[i]);
        return 0;
    }
    
  • 相关阅读:
    C# SendKeys用法
    Winform的高DPI问题
    CefSharp在高DPI的屏幕上出现黑边(winform)
    CefSharp支持flash
    CeSharp支持MP4
    C#加密解密总览
    Eclipse 调试Bug之使用断点的七大技巧
    详解Eclipse断点
    怎样编写高质量的java代码
    Quartz任务调度基本使用
  • 原文地址:https://www.cnblogs.com/0xfffe/p/10539615.html
Copyright © 2011-2022 走看看