zoukankan      html  css  js  c++  java
  • Tokens on the Segments(优先队列+贪心)

    Consider $n$ segments on a two-dimensional plane, where the endpoints of the $i$-th segment are $(l_i, i)$ and $(r_i, i)$. One can put as many tokens as he likes on the integer points of the plane (recall that an integer point is a point whose $x$ and $y$ coordinates are both integers), but the $x$ coordinates of the tokens must be different from each other.

    What's the maximum possible number of segments that have at least one token on each of them?

    Input

    The first line of the input contains an integer $T$ (about 100), indicating the number of test cases. For each test case:

    The first line contains one integer $n$ ($1 le n le 10^5$), indicating the number of segments.

    For the next $n$ lines, the $i$-th line contains 2 integers $l_i, r_i$ ($1 le l_i le r_ile 10^9$), indicating the $x$ coordinates of the two endpoints of the $i$-th segment.

    It's guaranteed that at most 5 test cases have $n ge 100$.

    Output

    For each test case output one line containing one integer, indicating the maximum possible number of segments that have at least one token on each of them.

    Sample Input

    2
    3
    1 2
    1 1
    2 3
    3
    1 2
    1 1
    2 2
    

    Sample Output

    3
    2
    

    Hint

    For the first sample test case, one can put three tokens separately on (1, 2), (2, 1) and (3, 3).

    For the second sample test case, one can put two tokens separately on (1, 2) and (2, 3).

    题意挺麻烦的,就是说现在有一个二维坐标,上面有一些平行于x轴的线段,若现在有一线段从1到5,那么我们可以用1到5任意一点标记该线段,每个x值只能标记一条线段。

    问最多能标记几条线段

     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 struct node{
     6     int l, r;
     7     bool operator < (const node &x) const{
     8         return l>x.l || (l==x.l&&r>x.r); ///相反
     9     }
    10 }str;
    11 
    12 priority_queue<node>que;
    13 map <int, int> mp;
    14 
    15 int main()
    16 {
    17     int t, n, i, re;
    18     scanf("%d", &t);
    19     while(t--)
    20     {
    21         scanf("%d", &n);
    22         mp.clear();
    23         for(i=0;i<n;i++)
    24         {
    25             scanf("%d %d", &str.l, &str.r);
    26             que.push(str);
    27         }
    28 
    29         re = 0;
    30         while(!que.empty())
    31         {
    32             str = que.top();
    33             que.pop();
    34             if(!mp[str.l])
    35             {
    36                 mp[str.l] = 1;
    37                 re++;
    38             }
    39             else
    40             {
    41                 str.l++;
    42                 if(str.r>=str.l) que.push(str);
    43             }
    44         }
    45         printf("%d
    ", re);
    46     }
    47     return 0;
    48 }
  • 相关阅读:
    详解CUDA编程
    卷积神经网络详解
    python操作Excel读写--使用xlrd
    pycharm启动慢 –xms -xmx相关参数设置
    pycharm开发python利器入门
    win10安装windows live writer 错误:OnCatalogResult:0x80190194
    curl 模拟请求
    Python AES_ECB_PKCS5加密代码
    如何让eclipse恢复默认布局
    eclipse中项目jdk1.8刷新下就变成1.5的解决办法
  • 原文地址:https://www.cnblogs.com/0xiaoyu/p/12844329.html
Copyright © 2011-2022 走看看