zoukankan      html  css  js  c++  java
  • The Shortest Path in Nya Graph (最短路+建图难点)

    The Shortest Path in Nya Graph

     HDU - 4725

      This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do not understand a word of this paragraph, just move on. 
    The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total. 
    You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost. 
    Besides, there are M extra edges, each connecting a pair of node u and v, with cost w. 
    Help us calculate the shortest path from node 1 to node N.

      InputThe first line has a number T (T <= 20) , indicating the number of test cases. 
    For each test case, first line has three numbers N, M (0 <= N, M <= 10 5) and C(1 <= C <= 10 3), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers. 
    The second line has N numbers l i (1 <= l i <= N), which is the layer of i th node belong to. 
    Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 10 4), which means there is an extra edge, connecting a pair of node u and v, with cost w.OutputFor test case X, output "Case #X: " first, then output the minimum cost moving from node 1 to node N. 
    If there are no solutions, output -1.Sample Input

    2
    3 3 3
    1 3 2
    1 2 1
    2 3 1
    1 3 3
    
    3 3 3
    1 3 2
    1 2 2
    2 3 2
    1 3 4

    Sample Output

    Case #1: 2
    Case #2: 3

    题意是给 n个点,m个边,C

    m条边u,v,w,w是边权

     除此之外给你一个个 layer[i],表示点i属于第 layer[i]层! 

    关于层的性质有两个 【如果相邻两层都存在节点,则x层任意节点可以与x+1层任意节点互通,代价为C】

    当然如果有一层为空,则空层是无法与上下层相通的哦!相当于断层!

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<queue>
    #include<vector>
    #include<algorithm>
    #define inf 0x3f3f3f3f
    using namespace std;
    const int maxn=2e5+100; 
    struct node{
        int to;
        int w;
        int next;
    }e[maxn*4];
    int c[maxn];
    int cnt;
    int vis[maxn],head[maxn],dis[maxn];
    void init()
    {
        memset(dis,inf,sizeof(dis));
        memset(head,-1,sizeof(head));
        memset(vis,0,sizeof(vis));
        cnt=0;
    }
    void add(int x,int y,int c)
    {
        e[cnt].to=y;
        e[cnt].next=head[x];
        e[cnt].w=c;
        head[x]=cnt++;
    }
    struct Node{
        int pos;
        int w;
        Node(){}
        Node(int pos,int w):pos(pos),w(w){}
        friend bool operator < (Node a,Node b)
        {
            return a.w>b.w;
        }
    };
    int dijkstra(int st,int ed)
    {
        priority_queue<Node>q;
        q.push(Node(st,0));
        dis[st]=0;
        while(!q.empty())
        {
            Node u=q.top();
            q.pop();
            if(vis[u.pos])
                continue;
            vis[u.pos]=1;
            for(int i=head[u.pos];i!=-1;i=e[i].next)
            {
                int v=e[i].to;
                if(!vis[v]&&dis[v]>dis[u.pos]+e[i].w)
                {
                    dis[v]=dis[u.pos]+e[i].w;
                    q.push(Node(v,dis[v]));
                }
            }
        }
        if(dis[ed]==inf)
            return -1;
        return dis[ed];
    }
    int a,b,cost;
    int x,y,z;
    int casen;
    int n,m;
    //我们需要假设有2n个点,1-n是题目给出的n个点,n+1-2n是这些点可能所在的层。 
    int main()
    {
        cin>>casen;
        int ca=1;
        while(casen--)
        {
            init();
            scanf("%d%d%d",&n,&m,&cost);
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&x);
                c[x]=1;
                add(i,n+x,0);//这里是点和所在层建立关系  不能建双向边的原因是假设有两个点在同一层
                //比如有三个点,点1在第一层,点2也在第一层,虚拟第一层为点4,那么1-4有一条距离为0的点,4-1有一条距离为0的点
                //2-4有一条距离为0的点,4-2有一条距离为0的点,那么1-2距离就成为0了,这是不对的。 
                if(x>1)
                {
                    add(i,x+n-1,cost); 
                }
                if(x<n)
                {
                    add(i,x+n+1,cost);
                }
                //这两个if建立单向边的原因是,如果三层,中间一层没有点,建立双向边会导致最上和最下的两层可以相通,而事实上是不通的
                //如图 
            }
            for(int i=1;i<=m;i++)
            {
                scanf("%d%d%d",&x,&y,&z);
                add(x,y,z);
                add(y,x,z);
            }
            printf("Case #%d: %d
    ",ca++,dijkstra(1,n));
        }
    }

  • 相关阅读:
    Docker网络简介
    Dockerfile数据管理
    Dockerfile指令详解下
    Dockerfile指令详解上
    设计模式之装饰器模式
    设计模式之适配器模式
    Java NIO的工作方式
    使用Dockerfile定制镜像
    jquery+asp.net 调用百度geocoder手机浏览器定位--Api介绍及Html定位方法
    js 取父级 页面上的元素
  • 原文地址:https://www.cnblogs.com/1013star/p/10004101.html
Copyright © 2011-2022 走看看