前置技能
从组合数公式可以直接推出: (kmathrm{C}_n^k = nmathrm{C}_{n-1}^{k-1})
同样地,你可以得到 ((k-1)mathrm{C}_{n-1}^{k-1} = (n-1)mathrm{C}_{n-2}^{k-2}) (禁止套娃)
你还要熟悉二项式定理:
[(p+q)^n = sum_{k=0}^n mathrm{C}_n^k p^k q^{n-k}
]
你还要知道二项分布的概率和期望公式:
若 (Xsim B(n,p)),则 (P(x = k) = C_n^k p^k (1-p)^{n- k}),(E(X) = np)
回归正题
第一步当然是定义式啦
[egin{aligned}
D(X) &=sum_{k=0}^{n}left[k-E(X)
ight]^{2} cdot p_{k} \
&=sum_{k=0}^{n}(k-n p)^{2} cdot mathrm{C}_{n}^{k} p^{k} q^{n-k} \
end{aligned}
]
看到 ((k-np)^2) 是不是就很想把它拆开?
[egin{aligned}
D(X) &=sum_{k=0}^{n}(k^2-2knp+n^2p^2) cdot mathrm{C}_{n}^{k} p^{k} q^{n-k} \
& =color{Red}{sum_{k=0}^{n} k^{2} cdot mathrm{C}_{n}^{k} p^{k} q^{n-k}} \
&quad -2np color{Blue}{sum_{k=0}^{n} k cdot mathrm{C}_{n}^{k} p^{k} q^{n-k}} \
&quad +n^2 p^2 color{Green}{sum_{k=0}^{n} mathrm{C}_{n}^{k} p^{k} q^{n-k}}
end{aligned}
]
这式子也太长了吧 (#°Д°)
首先你肯定会把魔爪伸向 (color{Green}{sum_{k=0}^{n} mathrm{C}_{n}^{k} p^{k} q^{n-k}}) —— 他就是个二项式定理嘛!
[color{Green}{sum_{k=0}^{n} mathrm{C}_{n}^{k} p^{k} q^{n-k}} = (p+q)^n=1
]
然后,你看到 (color{Blue}{sum_{k=0}^{n} k cdot mathrm{C}_{n}^{k} p^{k} q^{n-k}}) 里面的 (color{Blue}{k cdot mathrm{C}_{n}^{k}}) 的时候,是不是有把 (color{Blue}{kcdot mathrm{C}_n^k}) 换成 (ncdotmathrm{C}_{n-1}^{k-1}) 的冲动?
[egin{aligned}
&color{Blue}{sum_{k=0}^{n} k cdot mathrm{C}_{n}^{k} p^{k} q^{n-k}} \
=& sum_{k=1}^{n} k cdot mathrm{C}_{n}^{k} p^{k} q^{n-k} quad ext{(第一项是 0, 丢掉)}\
=& sum_{k=1}^{n} n cdot mathrm{C}_{n-1}^{k-1} p^{k} q^{n-k} \
=& np cdot sum_{k=1}^{n} mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \
=& np cdot (p+q)^{n-1} \
=& np
end{aligned}
]
现在只剩 (color{Red}{sum_{k=0}^{n} k^{2} cdot mathrm{C}_{n}^{k} p^{k} q^{n-k}}) 了,首先你肯定会故技重施:
[egin{aligned}
&color{Red}{sum_{k=0}^{n} k^{2} cdot mathrm{C}_{n}^{k} p^{k} q^{n-k}} \
=& sum_{k=1}^{n} k cdot k cdot mathrm{C}_{n}^{k} p^{k} q^{n-k} \
=& sum_{k=1}^{n} kp cdot n cdot mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \
=& npsum_{k=1}^{n} k cdot mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}
end{aligned}
]
但是 (mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}) 前面还有个 (k) 啊,不能用啊 (ノ`Д)ノ
所以,怎么把这个 (k) 搞掉呢???(我认为这是最难的一步,读者可以停下来思考思考)
你肯定想用 ((k-1) mathrm{C}_{n-1}^{k-1} = (n-1) mathrm{C}_{n-2}^{k-2}),但人家是 (kmathrm{C}_{n-1}^{k-1}) 不是 ((k-1) mathrm{C}_{n-1}^{k-1}) 啊
那就……把 (k) 拆成 ((k-1+1)) 吧!(我真是太机智了)
[egin{aligned}
& color{Red}{npsum_{k=1}^{n} k cdot mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}} \
=& npsum_{k=1}^{n} (k-1+1) cdot mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \
=& npsum_{k=1}^{n} left[(k-1) mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} + mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}
ight] \
=& np left[sum_{k=2}^{n} (k-1) mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} + sum_{k=1}^n mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}
ight] \
=& np left[sum_{k=2}^{n} (n-1)p cdot mathrm{C}_{n-2}^{k-2} p^{k-2} q^{n-k} + (p+q)^{n-1}
ight] \
=& np left[(n-1)p cdot sum_{k=2}^{n} mathrm{C}_{n-2}^{k-2} p^{k-2} q^{n-k} + 1
ight] \
=& np left[(n-1)p cdot (p+q)^{n-2} + 1
ight] \
=& np left[(n-1)p + 1
ight] \
=& np(np-p+1)
end{aligned}
]
终于!三个部分都推完了!!
[egin{aligned}
&D(X) \
=&color{Red}{sum_{k=0}^{n} k^{2} cdot mathrm{C}_{n}^{k} p^{k} q^{n-k}} \
& -2np color{Blue}{sum_{k=0}^{n} k cdot mathrm{C}_{n}^{k} p^{k} q^{n-k}} \
& +n^2 p^2 color{Green}{sum_{k=0}^{n} mathrm{C}_{n}^{k} p^{k} q^{n-k}} \
=& np(np-p+1) -2npcdot np +n^2p^2 \
=& np(1-p)
end{aligned}
]
证毕( ̄︶ ̄)↗