zoukankan      html  css  js  c++  java
  • codeforces 569 D. Symmetric and Transitive (组合数学 第二类斯特林数 贝尔数)

    D. Symmetric and Transitive
    time limit per test
    1.5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Little Johnny has recently learned about set theory. Now he is studying binary relations. You've probably heard the term "equivalence relation". These relations are very important in many areas of mathematics. For example, the equality of the two numbers is an equivalence relation.

    A set ρ of pairs (a, b) of elements of some set A is called a binary relation on set A. For two elements a and b of the set A we say that they are in relation ρ, if pair , in this case we use a notation .

    Binary relation is equivalence relation, if:

    1. It is reflexive (for any a it is true that );
    2. It is symmetric (for any ab it is true that if , then );
    3. It is transitive (if  and , than ).

    Little Johnny is not completely a fool and he noticed that the first condition is not necessary! Here is his "proof":

    Take any two elements, a and b. If , then  (according to property (2)), which means  (according to property (3)).

    It's very simple, isn't it? However, you noticed that Johnny's "proof" is wrong, and decided to show him a lot of examples that prove him wrong.

    Here's your task: count the number of binary relations over a set of size n such that they are symmetric, transitive, but not an equivalence relations (i.e. they are not reflexive).

    Since their number may be very large (not 0, according to Little Johnny), print the remainder of integer division of this number by 109 + 7.

    Input

    A single line contains a single integer n (1 ≤ n ≤ 4000).

    Output

    In a single line print the answer to the problem modulo 109 + 7.

    Sample test(s)
    input
    1
    output
    1
    input
    2
    output
    3
    input
    3
    output
    10
    Note

    If n = 1 there is only one such relation — an empty one, i.e. . In other words, for a single element x of set A the following is hold: .

    If n = 2 there are three such relations. Let's assume that set A consists of two elements, x and y. Then the valid relations are ,ρ = {(x, x)}, ρ = {(y, y)}. It is easy to see that the three listed binary relations are symmetric and transitive relations, but they are not equivalence relations.

    给出n个元素的集合上满足传递律,交换律,但不满足自反律的二元关系个数.

    还以为是我离散数学没认真听才没做出来...

    题解:http://blog.csdn.net/mengzhengnan/article/details/47424295

    /*************************************************************************
        > File Name: code/cf/#315/D.cpp
        > Author: 111qqz
        > Email: rkz2013@126.com 
        > Created Time: 2015年08月15日 星期六 06时01分22秒
     ************************************************************************/
    
    #include<iostream>
    #include<iomanip>
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<string>
    #include<map>
    #include<set>
    #include<queue>
    #include<vector>
    #include<stack>
    #define y0 abc111qqz
    #define y1 hust111qqz
    #define yn hez111qqz
    #define j1 cute111qqz
    #define tm crazy111qqz
    #define lr dying111qqz
    using namespace std;
    #define REP(i, n) for (int i=0;i<int(n);++i)  
    typedef long long LL;
    typedef unsigned long long ULL;
    const int inf = 0x7fffffff;
    const LL MOD=1E9+7;
    const int N=4E3+5;
    LL dp[N][N],c[N][N];
    void init()
    {
        dp[0][0] = 1;
        dp[1][1] = 1;
        for ( int i = 2; i < N; i++)
        {
        dp[i][1] = dp[i-1][i-1];
        for ( int j = 2 ; j <= i ; j++)
        {
            dp[i][j] = (dp[i][j-1] + dp[i-1][j-1]) %MOD;
        }
        }
    
        for ( int i = 1 ; i< N ;i++)
        {
        c[i][0] = 1;
        c[i][i] = 1;
        for ( int j = 1 ; j<i ; j++)
        {
            c[i][j] = (c[i-1][j-1] + c[i-1][j])%MOD;
    
        }
        }
    }
    int main()
    {
        init();
        int n;
        LL ans = 0;
        scanf("%d",&n);
        for ( int i = 0 ; i < n ; i++)
        {
        ans = ans + c[n][i] * dp[i][i];
        ans = ans % MOD;
        }
        cout<<ans<<endl;
      
        return 0;
    }
  • 相关阅读:
    bat学习
    Eclipse调试方法及快捷键
    JDK中的设计模式
    开源-自由-乔布斯
    AOP
    编程语言
    [LeetCode] 160. Intersection of Two Linked Lists(两个单链表的交集)
    [LeetCode] 198. House Robber(小偷)
    [LeetCode] 155. Min Stack(最小栈)
    [LeetCode] 1. Two Sum(两数之和)
  • 原文地址:https://www.cnblogs.com/111qqz/p/4731644.html
Copyright © 2011-2022 走看看