zoukankan      html  css  js  c++  java
  • hdu5441

    Travel

    Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 1225    Accepted Submission(s): 443


    Problem Description
    Jack likes to travel around the world, but he doesn’t like to wait. Now, he is traveling in the Undirected Kingdom. There are n cities and m bidirectional roads connecting the cities. Jack hates waiting too long on the bus, but he can rest at every city. Jack can only stand staying on the bus for a limited time and will go berserk after that. Assuming you know the time it takes to go from one city to another and that the time Jack can stand staying on a bus is x minutes, how many pairs of city (a,b) are there that Jack can travel from city a to b without going berserk?
     
    Input
    The first line contains one integer T,T5, which represents the number of test case.

    For each test case, the first line consists of three integers n,m and q where n20000,m100000,q5000. The Undirected Kingdom has n cities and m bidirectional roads, and there are q queries.

    Each of the following m lines consists of three integers a,b and d where a,b{1,...,n} and d100000. It takes Jack d minutes to travel from city a to city b and vice versa.

    Then q lines follow. Each of them is a query consisting of an integer x where x is the time limit before Jack goes berserk.

     
    Output
    You should print q lines for each test case. Each of them contains one integer as the number of pair of cities (a,b) which Jack may travel from a to b within the time limit x.

    Note that (a,b) and (b,a) are counted as different pairs and a and b must be different cities.
     
    Sample Input
    1 5 5 3 2 3 6334 1 5 15724 3 5 5705 4 3 12382 1 3 21726 6000 10000 13000
     
    Sample Output
    2 6 12
     
    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int maxn=20010;
    const int maxm=100010;
    const int maxq=5005;
    struct node1{
       int u,v,w;
       node1(){}
       node1(int u,int v,int w):u(u),v(v),w(w) {}
    }g[maxm];
    
    struct node2{
       int d,id;
       node2(){}
       node2(int d,int id):d(d),id(id) {}
    }que[5005];
    long long  ans[5005];
    int num[maxn], rak[maxn],father[maxn];
    bool cmp1(struct node1 t1,struct node1 t2){
          return t1.w<t2.w;
    }
    bool cmp2(struct node2 t1,struct node2 t2){
       return t1.d<t2.d;
    }
    
    
    int find(int x){
       if(x!=father[x])
           father[x]=find(father[x]);
        return father[x];
    }
    long long  tnum;
    void Union(int u,int v){
        int x=find(u);
        int y=find(v);
        if(x==y)
            return ;
        tnum+=num[x]*num[y];
    
        if(rak[x]<rak[y]){
               father[x]=y;
               num[y]+=num[x];
               num[x]=0;
        }
        else {
            father[y]=x;
           if(rak[x]==rak[y])
                ++rak[x];
           num[x]+=num[y];
           num[y]=0;
        }
    }
    
    int main(){
       int t;
       scanf("%d",&t);
       while(t--){
          int n,m,q;
        
          scanf("%d%d%d",&n,&m,&q);
          int u,v,w;
    
        for(int i=1;i<=n;i++){
          father[i]=i;
          num[i]=1;
          rak[i]=0;
        }
    
          for(int i=0;i<m;i++){
              scanf("%d%d%d",&u,&v,&w);
               g[i]=node1(u,v,w);
          }
          sort(g,g+m,cmp1);
          int d;
          for(int i=0;i<q;i++){
            scanf("%d",&d);
            que[i]=node2(d,i);
          }
          sort(que,que+q,cmp2);
            memset(ans,0,sizeof(ans));
          tnum=0;
          for(int i=0,j=0;i<q;i++){
              int cur=que[i].d;
              while(j<m){
                node1 temp=g[j];
        
                 if(cur>=temp.w){
                
                    Union(temp.u,temp.v);
                 }
                 else
                     break;
                 j++;
              }
             ans[que[i].id]=tnum;
          }
          for(int i=0;i<q;i++)
              printf("%lld
    ",ans[i]*2);
    
       }
       return 0;
    }
  • 相关阅读:
    【51nod1674】区间的价值 V2(算法效率--位运算合并优化+链表实现)
    【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)
    关于中国剩余定理{附【转】中国剩余定理 }
    JavaScript操作BOM
    学员操作—统计考试平均成绩
    JavaScript基础
    JDBC
    进制
    事务
    复习
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/4811557.html
Copyright © 2011-2022 走看看