zoukankan      html  css  js  c++  java
  • 关联规则FpGrowth算法

      Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力。今天我们介绍一个新的算法挖掘频繁项集,效率比Aprori算法高很多。

      FpGrowth算法通过构造一个树结构来压缩数据记录,使得挖掘频繁项集只需要扫描两次数据记录,而且该算法不需要生成候选集合,所以效率会比较高。我们还是以上一篇中用的数据集为例: 

    TID Items
    T1 {牛奶,面包}
    T2 {面包,尿布,啤酒,鸡蛋}
    T3 {牛奶,尿布,啤酒,可乐}
    T4 {面包,牛奶,尿布,啤酒}
    T5 {面包,牛奶,尿布,可乐}

    一、构造FpTree

      FpTree是一种树结构,树结构定义如下: 

    复制代码
    public class FpNode {
    
    String idName;</span><span style="color: #008000;">//</span><span style="color: #008000;"> id号</span>
    List&lt;FpNode&gt; children;<span style="color: #008000;">//</span><span style="color: #008000;"> 孩子结点</span>
    FpNode parent;<span style="color: #008000;">//</span><span style="color: #008000;"> 父结点</span>
    FpNode next;<span style="color: #008000;">//</span><span style="color: #008000;"> 下一个id号相同的结点</span>
    <span style="color: #0000ff;">long</span> count;<span style="color: #008000;">//</span><span style="color: #008000;"> 出现次数</span>
    

    } 

    复制代码

      树的每一个结点代表一个项,这里我们先不着急看树的结构,我们演示一下FpTree的构造过程,FpTree构造好后自然明白了树的结构。假设我们的最小绝对支持度是3。

      Step 1:扫描数据记录,生成一级频繁项集,并按出现次数由多到少排序,如下所示: 

    Item Count
    牛奶 4
    面包 4
    尿布 4
    啤酒 3

      可以看到,鸡蛋和可乐没有出现在上表中,因为可乐只出现2次,鸡蛋只出现1次,小于最小支持度,因此不是频繁项集,根据Apriori定理,非频繁项集的超集一定不是频繁项集,所以可乐和鸡蛋不需要再考虑。

      Step 2:再次扫描数据记录,对每条记录中出现在Step 1产生的表中的项,按表中的顺序排序。初始时,新建一个根结点,标记为null;

      1)第一条记录:{牛奶,面包},按Step 1表过滤排序得到依然为{牛奶,面包},新建一个结点,idName为{牛奶},将其插入到根节点下,并设置count为1,然后新建一个{面包}结点,插入到{牛奶}结点下面,插入后如下所示:

      2)第二条记录:{面包,尿布,啤酒,鸡蛋},过滤并排序后为:{面包,尿布,啤酒},发现根结点没有包含{面包}的儿子(有一个{面包}孙子但不是儿子),因此新建一个{面包}结点,插在根结点下面,这样根结点就有了两个孩子,随后新建{尿布}结点插在{面包}结点下面,新建{啤酒}结点插在{尿布}下面,插入后如下所示:

     

      3)第三条记录:{牛奶,尿布,啤酒,可乐},过滤并排序后为:{牛奶,尿布,啤酒},这时候发现根结点有儿子{牛奶},因此不需要新建结点,只需将原来的{牛奶}结点的count加1即可,往下发现{牛奶}结点有一个儿子{尿布},于是新建{尿布}结点,并插入到{牛奶}结点下面,随后新建{啤酒}结点插入到{尿布}结点后面。插入后如下图所示:

      4)第四条记录:{面包,牛奶,尿布,啤酒},过滤并排序后为:{牛奶,面包,尿布,啤酒},这时候发现根结点有儿子{牛奶},因此不需要新建结点,只需将原来的{牛奶}结点的count加1即可,往下发现{牛奶}结点有一个儿子{面包},于是也不需要新建{面包}结点,只需将原来{面包}结点的count加1,由于这个{面包}结点没有儿子,此时需新建{尿布}结点,插在{面包}结点下面,随后新建{啤酒}结点,插在{尿布}结点下面,插入后如下图所示:

      

      5)第五条记录:{面包,牛奶,尿布,可乐},过滤并排序后为:{牛奶,面包,尿布},检查发现根结点有{牛奶}儿子,{牛奶}结点有{面包}儿子,{面包}结点有{尿布}儿子,本次插入不需要新建结点只需更新count即可,示意图如下:

      

      按照上面的步骤,我们已经基本构造了一棵FpTree(Frequent Pattern Tree),树中每天路径代表一个项集,因为许多项集有公共项,而且出现次数越多的项越可能是公公项,因此按出现次数由多到少的顺序可以节省空间,实现压缩存储,另外我们需要一个表头和对每一个idName相同的结点做一个线索,方便后面使用,线索的构造也是在建树过程形成的,但为了简化FpTree的生成过程,我没有在上面提到,这个在代码有体现的,添加线索和表头的Fptree如下:

      至此,整个FpTree就构造好了,在下面的挖掘过程中我们会看到表头和线索的作用。

    二、利用FpTree挖掘频繁项集

       FpTree建好后,就可以进行频繁项集的挖掘,挖掘算法称为FpGrowth(Frequent Pattern Growth)算法,挖掘从表头header的最后一个项开始。

      1)此处即从{啤酒}开始,根据{啤酒}的线索链找到所有{啤酒}结点,然后找出每个{啤酒}结点的分支:{牛奶,面包,尿布,啤酒:1},{牛奶,尿布,啤酒:1},{面包,尿布,啤酒:1},其中的“1”表示出现1次,注意,虽然{牛奶}出现4次,但{牛奶,面包,尿布,啤酒}只同时出现1次,因此分支的count是由后缀结点{啤酒}的count决定的,除去{啤酒},我们得到对应的前缀路径{牛奶,面包,尿布:1},{牛奶,尿布:1},{面包,尿布:1},根据前缀路径我们可以生成一颗条件FpTree,构造方式跟之前一样,此处的数据记录变为:

    TID Items
    T1 {牛奶,面包,尿布}
    T2 {牛奶,尿布}
    T3 {面包,尿布}

      绝对支持度依然是3,构造得到的FpTree为:

    构造好条件树后,对条件树进行递归挖掘,当条件树只有一条路径时,路径的所有组合即为条件频繁集,假设{啤酒}的条件频繁集为{S1,S2,S3},则{啤酒}的频繁集为{S1+{啤酒},S2+{啤酒},S3+{啤酒}},即{啤酒}的频繁集一定有相同的后缀{啤酒},此处的条件频繁集为:{{},{尿布}},于是{啤酒}的频繁集为{{啤酒}{尿布,啤酒}}。

      2)接下来找header表头的倒数第二个项{尿布}的频繁集,同上可以得到{尿布}的前缀路径为:{面包:1},{牛奶:1},{牛奶,面包:2},条件FpTree的数据集为:

    TID Items
    T1 {面包}
    T2 {牛奶}
    T3 {牛奶,面包}
    T4 {牛奶,面包}

      注意{牛奶,面包:2},即{牛奶,面包}的count为2,所以在{牛奶,面包}重复了两次,这样做的目的是可以利用之前构造FpTree的算法来构造条件Fptree,不过这样效率会降低,试想如果{牛奶,面包}的count为20000,那么就需要展开成20000条记录,然后进行20000次count更新,而事实上只需要对count更新一次到20000即可。这是实现上的优化细节,实践中当注意。构造的条件FpTree为:


       这颗条件树已经是单一路径,路径上的所有组合即为条件频繁集:{{},{牛奶},{面包},{牛奶,面包}},加上{尿布}后,又得到一组频繁项集{{尿布},{牛奶,尿布},{面包,尿布},{牛奶,面包,尿布}},这组频繁项集一定包含一个相同的后缀:{尿布},并且不包含{啤酒},因此这一组频繁项集与上一组不会重复。

      重复以上步骤,对header表头的每个项进行挖掘,即可得到整个频繁项集,可以证明(严谨的算法和证明可见参考文献[1]),频繁项集即不重复也不遗漏。

      程序的实现代码还是放在我的github上,这里看一下运行结果:

    复制代码
    绝对支持度: 3
    频繁项集: 
    面包 尿布     3
    尿布 牛奶     3
    牛奶     4
    面包 牛奶     3
    尿布 啤酒     3
    面包     4
    复制代码

      另外我下载了一个购物篮的数据集,数据量较大,测试了一下FpGrowth的效率还是不错的。FpGrowth算法的平均效率远高于Apriori算法,但是它并不能保证高效率,它的效率依赖于数据集,当数据集中的频繁项集的没有公共项时,所有的项集都挂在根结点上,不能实现压缩存储,而且Fptree还需要其他的开销,需要存储空间更大,使用FpGrowth算法前,对数据分析一下,看是否适合用FpGrowth算法。

      下一篇将介绍,关联规则的评价标准,欢迎持续关注。

     参考文献

      [1].Han jia wei, Pei Jan等 Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach.2004

    感谢关注,欢迎回帖交流!

    转载请注明出处:http://www.cnblogs.com/fengfenggirl

  • 相关阅读:
    解决SharePoint 文档库itemadded eventhandler导致的上传完成后,编辑页面保持报错的问题,错误信息为“该文档已经被编辑过 the file has been modified by...”
    解决SharePoint 2013 designer workflow 在发布的报错“负载平衡没有设置”The workflow files were saved but cannot be run.
    随机实例,随机值
    Spring4笔记
    struts2笔记(3)
    struts2笔记(2)
    获取文本的编码类型(from logparse)
    FileUtil(from logparser)
    DateUtil(SimpleDateFormat)
    struts2笔记
  • 原文地址:https://www.cnblogs.com/1693wl/p/7224057.html
Copyright © 2011-2022 走看看