import requests import re import pandas from bs4 import BeautifulSoup from datetime import datetime # 1. 将新闻的正文内容保存到文本文件。 def writeNewsDetail(content): f = open('gzccNews.txt', 'a',encoding='utf-8') f.write(content) f.close() # 2. 将新闻数据结构化为字典的列 def getClickCount(newsUrl): newsId = re.search('\_(.*).html', newsUrl).group(1).split('/')[-1] clickUrl = "http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80".format(newsId) return(int(requests.get(clickUrl).text.split('.html')[-1].lstrip("('").rstrip("');"))) def getNewDetail(newsUrl): resd = requests.get(newsUrl) resd.encoding = 'utf-8' soupd = BeautifulSoup(resd.text, 'html.parser') news = {} news['title']=soupd.select('.show-title')[0].text info = soupd.select('.show-info')[0].text news['dt'] = datetime.strptime(info.lstrip('发布时间')[1:20], '%Y-%m-%d %H:%M:%S') if info.find('来源:') > 0: news['source'] = info[info.find('来源:'):].split()[0].lstrip('来源:') else: news['source'] = 'none' news['content'] = soupd.select('.show-content')[0].text.strip() news['click'] = getClickCount(newsUrl) news['newsUrl'] = newsUrl return (news) def getListPage(pageUrl): res = requests.get(pageUrl) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') newsList = [] for news in soup.select('li'): if len(news.select('.news-list-title')) > 0: newsUrl = news.select('a')[0].attrs['href'] #链接 newsList.append(getNewDetail(newsUrl)) return (newsList) def getPageN(): # 新闻列表页的总页数 res = requests.get('http://news.gzcc.cn/html/xiaoyuanxinwen/') res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') n = int(soup.select('.a1')[0].text.rstrip('条')) return (n // 10 + 1) newsTotal = [] fristPageUrl = 'http://news.gzcc.cn/html/xiaoyuanxinwen/' newsTotal.extend(getListPage(fristPageUrl)) n = getPageN() for i in range(n,n+1): listPageUrl = 'http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'.format(i) newsTotal.extend(getListPage(listPageUrl)) # 3. 安装pandas,用pandas.DataFrame(newstotal),创建一个DataFrame对象df. df = pandas.DataFrame(newsTotal) # 4. 通过df将提取的数据保存到csv或excel 文件。 df.to_excel('416.xlsx') # 5. 用pandas提供的函数和方法进行数据分析: print(df[['click','title','source']].head(6)) print(df[(df['source'] == '学校综合办') | (df['click']>3000) ]) sourcelist = ['国际学院','学生工作处'] print(df[df['source'].isin(sourcelist)])