#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=3000005;
long long oula[maxn];
int prime[maxn];
bool vis[maxn];
void L_oula()//用线性筛法打表计算maxn中所有的欧拉函数值,
{
int top=0;
oula[1]=1;
for(int i=2; i<maxn; i++)
{
if(!vis[i])
{
prime[top++]=i;
oula[i]=i-1;
}
for(int j=0; j<top&&prime[j]*i<maxn; j++)
{
vis[prime[j]*i]=1;
if(i%prime[j]==0)
{
oula[i*prime[j]]=oula[i]*prime[j];
break;
}
else
{
oula[i*prime[j]]=oula[i]*(prime[j]-1);
}
}
}
}
int main()
{
int a,b;
L_oula();
for(int i=2; i<maxn; i++)
{
oula[i]+=oula[i-1];//直接更新存在原欧拉函数的值上,否则爆内存
}
while(~scanf("%d %d",&a,&b))
{
printf("%I64d
",oula[b]-oula[a-1]);//区间内的欧拉函数值的和
}
return 0;
}
题目链接
http://120.78.128.11/Problem.jsp?pid=2432
#include<stdio.h>
#include<math.h>
#include<set>
#include<string.h>
using namespace std;
int func(int n)//唯一分解原理的计算单个数的欧拉函数
{
int ans;
ans = n;
for(int i = 2; i*i <= n; i++)
{
if(n %i == 0)
{
ans = ans / i * (i - 1);
while(n % i == 0)
n /= i;
}
}
if(n != 1)
ans = ans / n * (n - 1);
return ans;
}
int main()
{
int n;
while(scanf("%d", &n) && n)
{
printf("%d
", func(n));
}
return 0;
}