zoukankan      html  css  js  c++  java
  • 100722C

    My birthday is coming up and traditionally
    I’m serving pie. Not just one pie, no, I have
    a number
    N
    of them, of various tastes and of
    various sizes.
    F
    of my friends are coming to
    my party and each of them gets a piece of pie.
    This should be one piece of one pie, not sev-
    eral small pieces since that looks messy. This
    piece can be one whole pie though.
    My friends are very annoying and if one
    of them gets a bigger piece than the others,
    they start complaining. Therefore all of them
    should get equally sized (but not necessarily equally shaped) pieces, even if this leads to
    some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece
    of pie for myself too, and that piece should also be of the same size.
    What is the largest possible piece size all of us can get? All the pies are cylindrical in
    shape and they all have the same height 1, but the radii of the pies can be different.
    Input
    One line with a positive integer: the number of test cases. Then for each test case:
    One line with two integers
    N
    and
    F
    with 1
    N
    ,
    F
    10 000: the number of pies and
    the number of friends.
    One line with
    N
    integers
    r
    i
    with 1
    r
    i
    10 000: the radii of the pies.
    Output
    For each test case, output one line with the largest possible volume
    V
    such that me and my
    friends can all get a pie piece of size
    V
    . The answer should be given as a floating point
    number with an absolute error of at most 10
    3
    .做过啊 二分半径
    #include <set>
    #include <map>
    #include <queue>
    #include <deque>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <math.h>
    #include <time.h>
    #include <utility>
    #include <cstdlib>
    #include <sstream>
    #include <cstring>
    #include <stdio.h>
    #include <iostream>
    #include <algorithm>
    using namespace std;    
    const double PI=3.141592653589793;
    int T;
    double a[1000010];
    double l,r,n,f;
    bool C(double val)    
    {
        int temp=0;
        for(int i=1;i<=n;i++)
        {
            temp+=a[i]/val;
        }
        if(temp>=f)return true;
        else return false;
    }
    int main()
    {
        cin>>T;
        while(T--)
        {
            cin>>n>>f;
            memset(a,0,sizeof(a));
            for(int i=1;i<=n;i++)
            {
                cin>>a[i];
                a[i]=a[i]*a[i]*PI;
                r=max(a[i],r);
            }
            r++;
            l=0;
            f++;
            double mid=0;
            while(r-l>0.000001)
            {
                mid=(l+r)/2;
                if(C(mid))l=mid;
                else r=mid;
            }
            if(C(r))printf("%.4lf
    ",r);
            else printf("%.4lf
    ",mid);
        }
        return 0;
    }
  • 相关阅读:
    马踏棋盘的贪心算法
    Windows Phone开发(13):如何规范用户的输入行为
    Windows Phone开发(16):样式和控件模板
    Windows Phone开发(18):变形金刚第九季——变换
    Windows Phone开发(10):常用控件(上)
    Windows Phone开发(14):数据模板
    Windows Phone开发(12):认识一下独具个性的磁贴
    Windows Phone开发(15):资源
    Windows Phone开发(11):常用控件(下)
    Windows Phone开发(17):URI映射
  • 原文地址:https://www.cnblogs.com/19992147orz/p/5995076.html
Copyright © 2011-2022 走看看