线段树合并+离线+启发式合并
半年前这道题t成狗。。。
离线的做法比较好想,按照边的权值排序,询问的权值排序,然后枚举询问不断加边,加到上限后查找第k大值,这里平衡树,权值线段树都可以实现。
那么我们用权值线段树就行了, 并查集维护两点连通性,不连通的话就合并,并查集连接。
#include<bits/stdc++.h> using namespace std; const int N = 500010; struct Query { int v, x, k, id; bool friend operator < (Query A, Query B) { return A.x < B.x; } } q[N]; struct edge { int u, v, w; bool friend operator < (edge A, edge B) { return A.w < B.w; } } e[N]; int n, m, Q; int root[N], h[N], ans[N]; vector<int> vt; map<int, int> mp; inline int read() { int x = 0, f = 1; char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); } return x * f; } namespace seg { int cnt; int lc[N << 2], rc[N << 2], size[N << 2]; void update(int l, int r, int &x, int pos) { x = ++cnt; ++size[x]; if(l == r) return; int mid = (l + r) >> 1; if(pos <= mid) update(l, mid, lc[x], pos); else update(mid + 1, r, rc[x], pos); } int merge(int x, int y) { if(!x) return y; if(!y) return x; size[x] += size[y]; lc[x] = merge(lc[x], lc[y]); rc[x] = merge(rc[x], rc[y]); return x; } int query(int l, int r, int x, int rank) { if(l == r) return l; int mid = (l + r) >> 1; if(size[rc[x]] >= rank) return query(mid + 1, r, rc[x], rank); else return query(l, mid, lc[x], rank - size[rc[x]]); } } using namespace seg; int main() { n = read(); m = read(); Q = read(); for(int i = 1; i <= n; ++i) { h[i] = read(); vt.push_back(h[i]); } sort(vt.begin(), vt.end()); vt.erase(unique(vt.begin(), vt.end()), vt.end()); for(int i = 1; i <= n; ++i) { h[i] = lower_bound(vt.begin(), vt.end(), h[i]) - vt.begin() + 1; update(1, n, root[i], h[i]); } for(int i = 1; i <= m; ++i) { e[i].u = read(); e[i].v = read(); e[i].w = read(); } sort(e + 1, e + m + 1); for(int i = 1; i <= Q; ++i) { q[i].v = read(); q[i].x = read(); q[i].k = read(); q[i].id = i; } sort(q + 1, q + Q + 1); int j = 1; for(int i = 1; i <= Q; ++i) { while(e[j].w <= q[i].x && j <= m) { if(root[e[j].u] != root[e[j].v]) root[e[j].u] = root[e[j].v] = merge(root[e[j].u], root[e[j].v]); ++j; } if(size[root[q[i].v]] < q[i].k) ans[q[i].id] = -1; else ans[q[i].id] = query(1, n, root[q[i].v], q[i].k); } for(int i = 1; i <= Q; ++i) printf("%d ", ans[i]); return 0; }