zoukankan      html  css  js  c++  java
  • bzoj1778

    高斯消元+矩阵的逆

    来自popoqqq大神

    求矩阵的逆:把I-T放在左边,P/Q*S放在右边,这样就形成了一个n*2n的矩阵,然后把左边高斯消元,右边就是求完逆的矩阵,其实就是ans,矩阵的逆跟乘法逆元是一样的,只不过是矩阵的逆元

    然后输出a[i][n+1],事实上矩阵只有n*(n+1)

    构造转移概率矩阵是a[u][v]=1.0/d[v]*(1-p/q),就是v->u的概率乘上在v不爆炸的概率,我们想一想,假设我们从1->n,1->2,有1/d[1]的概率转移,并且不能爆炸才能走过去,要乘上(1-p/q),然后2->3,要乘上1/d[2]的概率走过去,再乘上(1-p/q),不爆炸才能走过去,这就是转移的概率,每次矩阵自乘,就是b[i][j] += a[i][k]*a[k][j],求出又走一步的概率,最先开始S便是行向量,表示从1开始,还没走就爆炸的概率就是自己在这里爆炸,就是乘T^0,第一次转移就是乘上T,

    #include<bits/stdc++.h>
    using namespace std;
    const double eps = 1e-15;
    const int N = 610;
    int n, m;
    double a[N][N];
    double p, q, t;
    vector<int> G[N];
    void gauss_jordan()
    {
        a[1][n + 1] = t;
        for(int i = 1; i <= n; ++i) 
        {
            a[i][i] += 1.0;
            for(int j = 0; j < G[i].size(); ++j)
            {
                int u = G[i][j];
                a[i][u] -= (1.0 - t) / (double)(G[u].size());
            }
        }
        for(int now = 1; now <= n; ++now)
        {
            int x = now;
            for(int i = now; i <= n; ++i) if(fabs(a[i][now]) > fabs(a[x][now])) x = i;
            for(int i = 1; i <= n + 1; ++i) swap(a[now][i], a[x][i]);
            double t = a[now][now];
            for(int i = 1; i <= n + 1; ++i) a[now][i] /= t;
            for(int i = 1; i <= n; ++i) if(fabs(a[i][now]) > eps && now != i)
            {
                t = a[i][now];
                for(int j = 1; j <= n + 1; ++j) a[i][j] -= t * a[now][j];
            }
        }    
        for(int i = 1; i <= n; ++i) printf("%.9f
    ", a[i][n + 1]);
    }
    int main()
    {
        scanf("%d%d%lf%lf", &n, &m, &p, &q);
        t = p / q;
        for(int i = 1; i <= m; ++i)
        {
            int u, v;
            scanf("%d%d", &u, &v);
            G[u].push_back(v);
            G[v].push_back(u);
        }
        gauss_jordan();
        return 0;
    }
    View Code
  • 相关阅读:
    Aerospike系列:4:简单的增删改查aql
    Aerospike系列:3:aerospike特点分析
    MySQL事物系列:2:事物的实现
    MySQL事物系列:1:事物简介
    MySQL 源码系列:1:窥探篇
    MySQL 内存和CPU优化相关的参数
    Aerospike系列:2:商业版和社区版的比较
    Aerospike系列:1:安装
    MDX Cookbook 08
    MDX Cookbook 07
  • 原文地址:https://www.cnblogs.com/19992147orz/p/7425092.html
Copyright © 2011-2022 走看看