zoukankan      html  css  js  c++  java
  • bzoj3168

    二分图+矩阵求逆

    既然我们考虑b能替换哪些a,那么我们自然要得出b被哪些a表示,这里我们设一个矩阵C,那么C*A = B

    为什么呢?直接A*C = B是不可行的,因为都是行向量,不能直接乘,那么我们转置一下,得出At*C=Bt,这样就很科学了,那么再转回来,A*Ct=B,于是Ct=B*A^-1那么矩阵求逆就能得出Ct,于是我们再转置回来就能得出B是由哪些A表示的,然后跑二分图匹配就行了。

    二分图匹配理解的不是很清楚,大概是不能用之前已经用过较小的编号来更新自己,还是看CQzhangyu的吧。

    矩阵求逆用取模就行了

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int N = 305;
    const ll P = 999911657;
    int rd()
    {
        int x = 0, f = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
        return x * f;
    } 
    ll power(ll x, ll t) 
    {
        ll ret = 1;
        for(; t; t >>= 1, x = x * x % P) 
            if(t & 1) 
                ret = ret * x % P;
        return ret;
    }
    void up(ll &x, const ll &t)
    {
        x = ((x + t) % P + P) % P;
    }
    int n;
    int vis[N], Map[N][N], match[N];
    struct Matrix {
        ll a[N][N];
        Matrix() { memset(a, 0, sizeof(a)); }
        void set() { for(int i = 1; i <= n; ++i) a[i][i] = 1; }
        Matrix friend operator * (const Matrix &a, const Matrix &b) {
            Matrix ret;
            for(int i = 1; i <= n; ++i)
                for(int k = 1; k <= n; ++k) if(a.a[i][k])
                    for(int j = 1; j <= n; ++j)
                        up(ret.a[i][j], a.a[i][k] * b.a[k][j] % P);
            return ret;
        }
        Matrix Inverse() 
        {
            Matrix c;
            c.set();
            for(int i = 1; i <= n; ++i)
            {
                int now = i;
                while(now <= n && !a[now][i]) ++now;
                for(int j = 1; j <= n; ++j) 
                {
                    swap(a[now][j], a[i][j]);
                    swap(c.a[now][j], c.a[i][j]);
                }
                ll Inv = power(a[i][i], P - 2);
                for(int j = 1; j <= n; ++j) 
                {
                    a[i][j] = a[i][j] * Inv % P;
                    c.a[i][j] = c.a[i][j] * Inv % P;
                }
                for(int k = 1; k <= n; ++k) if(k != i)
                {
                    ll t = ((P - a[k][i] % P) % P + P) % P;
                    for(int j = 1; j <= n; ++j)
                    {
                        a[k][j] = ((a[k][j] + t * a[i][j] % P) % P + P) % P;
                        c.a[k][j] = ((c.a[k][j] + t * c.a[i][j] % P) % P + P) % P;  
                    }
                }
            }
            return c;
        }
        void print()
        {
            for(int i = 1; i <= n; ++i)  
            {
                for(int j = 1; j <= n; ++j) printf("%d ", a[i][j]);
                puts("");
            }
        }
    } a, b, c, d;
    bool dfs(int u) 
    {
        for(int i = 1; i <= n; ++i) if(!vis[i] && Map[u][i]) 
        {
            vis[i] = 1;
            if(!match[i] || dfs(match[i])) 
            {
                match[i] = u;
                return true;
            }
        }
        return false;
    }
    bool dfs(int u, int lev) 
    {
        for(int i = 1; i <= n; ++i) if(!vis[i] && Map[u][i]) 
        {
            vis[i] = 1;
            if(match[i] == lev || (match[i] > lev && dfs(match[i], lev)))
            {
                match[i] = u;
                return true;
            }
        }
        return false;
    }
    int main()
    {
    //  freopen("ferrous.in", "r", stdin);
    //  freopen("ferrous.out", "w", stdout);
        n = rd();
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= n; ++j) 
                a.a[i][j] = rd();
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= n; ++j)
                b.a[i][j] = rd();
        c = b * a.Inverse();
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= n; ++j) if(c.a[i][j]) 
                Map[j][i] = 1;
        int ans = 0;
        for(int i = 1; i <= n; ++i)
        {
            memset(vis, 0, sizeof(vis));
            ans += dfs(i);  
        } 
        if(ans < n) 
        {
            puts("NIE");
            return 0;
        }
        for(int i = 1; i <= n; ++i) 
        {
            memset(vis, 0, sizeof(vis));
            dfs(i, i);
        }
        puts("TAK");
        for(int i = 1; i <= n; ++i) 
            for(int j = 1; j <= n; ++j) if(match[j] == i)
                printf("%d
    ", j);
    //    fclose(stdin);
    //    fclose(stdout);
        return 0;
    }
    View Code
  • 相关阅读:
    内存使用过高点检checklist
    Ubuntu linux系统下 su:出现: authentication failure的解决办法
    static完全解析
    C语言开发规范
    单片机、ARM、PC程序执行介质区别
    2021来了,一份小菜鸡的2020总结!
    Linux命令进阶篇-文件查看与查找
    LINUX常用命令(二)
    Linux常用命令(一)
    百钱百鸡
  • 原文地址:https://www.cnblogs.com/19992147orz/p/7911838.html
Copyright © 2011-2022 走看看