zoukankan      html  css  js  c++  java
  • linux下system函数的简单分析

     1 int
     2 __libc_system (const char *line)
     3 {
     4   if (line == NULL)
     5     /* Check that we have a command processor available.  It might
     6        not be available after a chroot(), for example.  */
     7     return do_system ("exit 0") == 0;
     8 
     9   return do_system (line);
    10 }
    11 weak_alias (__libc_system, system)

    代码位于glibc/sysdeps/posix/system.c,这里system是__libc_system的弱别名,而__libc_system是do_system的前端函数,进行了参数的检查,接下来看do_system函数。

      1 static int
      2 do_system (const char *line)
      3 {
      4   int status, save;
      5   pid_t pid;
      6   struct sigaction sa;
      7 #ifndef _LIBC_REENTRANT
      8   struct sigaction intr, quit;
      9 #endif
     10   sigset_t omask;
     11 
     12   sa.sa_handler = SIG_IGN;
     13   sa.sa_flags = 0;
     14   __sigemptyset (&sa.sa_mask);
     15 
     16   DO_LOCK ();
     17   if (ADD_REF () == 0)
     18     {
     19       if (__sigaction (SIGINT, &sa, &intr) < 0)
     20     {
     21       (void) SUB_REF ();
     22       goto out;
     23     }
     24       if (__sigaction (SIGQUIT, &sa, &quit) < 0)
     25     {
     26       save = errno;
     27       (void) SUB_REF ();
     28       goto out_restore_sigint;
     29     }
     30     }
     31   DO_UNLOCK ();
     32 
     33   /* We reuse the bitmap in the 'sa' structure.  */
     34   __sigaddset (&sa.sa_mask, SIGCHLD);
     35   save = errno;
     36   if (__sigprocmask (SIG_BLOCK, &sa.sa_mask, &omask) < 0)
     37     {
     38 #ifndef _LIBC
     39       if (errno == ENOSYS)
     40     __set_errno (save);
     41       else
     42 #endif
     43     {
     44       DO_LOCK ();
     45       if (SUB_REF () == 0)
     46         {
     47           save = errno;
     48           (void) __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL);
     49         out_restore_sigint:
     50           (void) __sigaction (SIGINT, &intr, (struct sigaction *) NULL);
     51           __set_errno (save);
     52         }
     53     out:
     54       DO_UNLOCK ();
     55       return -1;
     56     }
     57     }
     58 
     59 #ifdef CLEANUP_HANDLER
     60   CLEANUP_HANDLER;
     61 #endif
     62 
     63 #ifdef FORK
     64   pid = FORK ();
     65 #else
     66   pid = __fork ();
     67 #endif
     68   if (pid == (pid_t) 0)
     69     {
     70       /* Child side.  */
     71       const char *new_argv[4];
     72       new_argv[0] = SHELL_NAME;
     73       new_argv[1] = "-c";
     74       new_argv[2] = line;
     75       new_argv[3] = NULL;
     76 
     77       /* Restore the signals.  */
     78       (void) __sigaction (SIGINT, &intr, (struct sigaction *) NULL);
     79       (void) __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL);
     80       (void) __sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL);
     81       INIT_LOCK ();
     82 
     83       /* Exec the shell.  */
     84       (void) __execve (SHELL_PATH, (char *const *) new_argv, __environ);
     85       _exit (127);
     86     }
     87   else if (pid < (pid_t) 0)
     88     /* The fork failed.  */
     89     status = -1;
     90   else
     91     /* Parent side.  */
     92     {
     93       /* Note the system() is a cancellation point.  But since we call
     94      waitpid() which itself is a cancellation point we do not
     95      have to do anything here.  */
     96       if (TEMP_FAILURE_RETRY (__waitpid (pid, &status, 0)) != pid)
     97     status = -1;
     98     }
     99 
    100 #ifdef CLEANUP_HANDLER
    101   CLEANUP_RESET;
    102 #endif
    103 
    104   save = errno;
    105   DO_LOCK ();
    106   if ((SUB_REF () == 0
    107        && (__sigaction (SIGINT, &intr, (struct sigaction *) NULL)
    108        | __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL)) != 0)
    109       || __sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL) != 0)
    110     {
    111 #ifndef _LIBC
    112       /* glibc cannot be used on systems without waitpid.  */
    113       if (errno == ENOSYS)
    114     __set_errno (save);
    115       else
    116 #endif
    117     status = -1;
    118     }
    119   DO_UNLOCK ();
    120 
    121   return status;
    122 }
    do_system

    首先函数设置了一些信号处理程序,来处理SIGINT和SIGQUIT信号,此处我们不过多关心,关键代码段在这里

     1 #ifdef FORK
     2   pid = FORK ();
     3 #else
     4   pid = __fork ();
     5 #endif
     6   if (pid == (pid_t) 0)
     7     {
     8       /* Child side.  */
     9       const char *new_argv[4];
    10       new_argv[0] = SHELL_NAME;
    11       new_argv[1] = "-c";
    12       new_argv[2] = line;
    13       new_argv[3] = NULL;
    14 
    15       /* Restore the signals.  */
    16       (void) __sigaction (SIGINT, &intr, (struct sigaction *) NULL);
    17       (void) __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL);
    18       (void) __sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL);
    19       INIT_LOCK ();
    20 
    21       /* Exec the shell.  */
    22       (void) __execve (SHELL_PATH, (char *const *) new_argv, __environ);
    23       _exit (127);
    24     }
    25   else if (pid < (pid_t) 0)
    26     /* The fork failed.  */
    27     status = -1;
    28   else
    29     /* Parent side.  */
    30     {
    31       /* Note the system() is a cancellation point.  But since we call
    32      waitpid() which itself is a cancellation point we do not
    33      have to do anything here.  */
    34       if (TEMP_FAILURE_RETRY (__waitpid (pid, &status, 0)) != pid)
    35     status = -1;
    36     }

    首先通过前端函数调用系统调用fork产生一个子进程,其中fork有两个返回值,对父进程返回子进程的pid,对子进程返回0。所以子进程执行6-24行代码,父进程执行30-35行代码。

    子进程的逻辑非常清晰,调用execve执行SHELL_PATH指定的程序,参数通过new_argv传递,环境变量为全局变量__environ。

    其中SHELL_PATH和SHELL_NAME定义如下

    1 #define    SHELL_PATH    "/bin/sh"    /* Path of the shell.  */
    2 #define    SHELL_NAME    "sh"        /* Name to give it.  */

    其实就是生成一个子进程调用/bin/sh -c "命令"来执行向system传入的命令。

    下面其实是我研究system函数的原因与重点:

    在CTF的pwn题中,通过栈溢出调用system函数有时会失败,听师傅们说是环境变量被覆盖,但是一直都是懵懂,今天深入学习了一下,总算搞明白了。

    在这里system函数需要的环境变量储存在全局变量__environ中,那么这个变量的内容是什么呢。

    __environ是在glibc/csu/libc-start.c中定义的,我们来看几个关键语句。

    # define LIBC_START_MAIN __libc_start_main

    __libc_start_main是_start调用的函数,这涉及到程序开始时的一些初始化工作,对这些名词不了解的话可以看一下这篇文章。接下来看LIBC_START_MAIN函数。

      1 STATIC int
      2 LIBC_START_MAIN (int (*main) (int, char **, char ** MAIN_AUXVEC_DECL),
      3          int argc, char **argv,
      4 #ifdef LIBC_START_MAIN_AUXVEC_ARG
      5          ElfW(auxv_t) *auxvec,
      6 #endif
      7          __typeof (main) init,
      8          void (*fini) (void),
      9          void (*rtld_fini) (void), void *stack_end)
     10 {
     11   /* Result of the 'main' function.  */
     12   int result;
     13 
     14   __libc_multiple_libcs = &_dl_starting_up && !_dl_starting_up;
     15 
     16 #ifndef SHARED
     17   char **ev = &argv[argc + 1];
     18 
     19   __environ = ev;
     20 
     21   /* Store the lowest stack address.  This is done in ld.so if this is
     22      the code for the DSO.  */
     23   __libc_stack_end = stack_end;
        ......
    202 /* Nothing fancy, just call the function. */ 203 result = main (argc, argv, __environ MAIN_AUXVEC_PARAM); 204 #endif 205 206 exit (result); 207 }

    我们可以看到,在没有define SHARED的情况下,在第19行定义了__environ的值。启动程序调用LIBC_START_MAIN之前,会先将环境变量和argv中的字符串保存起来(其实是保存到栈上),然后依次将环境变量中各项字符串的地址,argv中各项字符串的地址和argc入栈,所以环境变量数组一定位于argv数组的正后方,以一个空地址间隔。所以第17行的&argv[argc + 1]语句就是取环境变量数组在栈上的首地址,保存到ev中,最终保存到__environ中。第203行调用main函数,会将__environ的值入栈,这个被栈溢出覆盖掉没什么问题,只要保证__environ中的地址处不被覆盖即可。

    所以,当栈溢出的长度过大,溢出的内容覆盖了__environ中地址中的重要内容时,调用system函数就会失败。具体环境变量距离溢出地址有多远,可以通过在_start中下断查看。

  • 相关阅读:
    Kafka实战-简单示例
    Kafka实战-Kafka Cluster
    Kafka实战-入门
    高可用Hadoop平台-Hue In Hadoop
    apt-get install 出问题怎么办?
    E: Unable to locate package clang-7 E: Unable to locate package clang++-7 E: Couldn't find any package by regex 'clang++-7'
    LaTeX多图合并代码示例(subfigure)
    Pytorch--Dropout笔记
    命令行神器之argparse使用笔记
    【转载】PyTorch系列 (二):pytorch数据读取
  • 原文地址:https://www.cnblogs.com/1oner/p/6837920.html
Copyright © 2011-2022 走看看