zoukankan      html  css  js  c++  java
  • Docker

    About some of the options

    • CUDA: For acceleration. Requires a good nVidia Graphics Card (which supports CUDA inside)
    • Docker: Provide a ready-made image. Hide trivial details. Get you straight to the project.
    • nVidia-Docker: Access to the nVidia GPU on host machine from inside container.

    CUDA with Docker in 20 minutes.

    INFO    The tool provides tips for installation
            and installs required python packages
    INFO    Setup in Linux 4.14.39-1-MANJARO
    INFO    Installed Python: 3.6.5 64bit
    INFO    Installed PIP: 10.0.1
    Enable  Docker? [Y/n] 
    INFO    Docker Enabled
    Enable  CUDA? [Y/n] 
    INFO    CUDA Enabled
    INFO    1. Install Docker
            https://www.docker.com/community-edition
            
            2. Install Nvidia-Docker & Restart Docker Service
            https://github.com/NVIDIA/nvidia-docker
            
            3. Build Docker Image For Faceswap
            docker build -t deepfakes-gpu -f Dockerfile.gpu .
            
            4. Mount faceswap volume and Run it
            # without gui. tools.py gui not working.
            nvidia-docker run --rm -it -p 8888:8888             --hostname faceswap-gpu --name faceswap-gpu             -v /opt/faceswap:/srv             deepfakes-gpu
            
            # with gui. tools.py gui working.
            ## enable local access to X11 server
            xhost +local:
            ## enable nvidia device if working under bumblebee
            echo ON > /proc/acpi/bbswitch
            ## create container 
            nvidia-docker run -p 8888:8888             --hostname faceswap-gpu --name faceswap-gpu             -v /opt/faceswap:/srv             -v /tmp/.X11-unix:/tmp/.X11-unix             -e DISPLAY=unix$DISPLAY             -e AUDIO_GID=`getent group audio | cut -d: -f3`             -e VIDEO_GID=`getent group video | cut -d: -f3`             -e GID=`id -g`             -e UID=`id -u`             deepfakes-gpu
            
            5. Open a new terminal to interact with the project
            docker exec faceswap-gpu python /srv/tools.py gui

    A successful setup log, without docker.

    INFO    The tool provides tips for installation
            and installs required python packages
    INFO    Setup in Linux 4.14.39-1-MANJARO
    INFO    Installed Python: 3.6.5 64bit
    INFO    Installed PIP: 10.0.1
    Enable  Docker? [Y/n] n
    INFO    Docker Disabled
    Enable  CUDA? [Y/n] 
    INFO    CUDA Enabled
    INFO    CUDA version: 9.1
    INFO    cuDNN version: 7
    WARNING Tensorflow has no official prebuild for CUDA 9.1 currently.
            To continue, You have to build your own tensorflow-gpu.
            Help: https://www.tensorflow.org/install/install_sources
    Are System Dependencies met? [y/N] y
    INFO    Installing Missing Python Packages...
    INFO    Installing tensorflow-gpu
    INFO    Installing pathlib==1.0.1
    ......
    INFO    Installing tqdm
    INFO    Installing matplotlib
    INFO    All python3 dependencies are met.
            You are good to go.

    Docker是一个什么工具?为什么要装它?能用它做什么?

  • 相关阅读:
    Promise小结 ES6异步编程
    XLNet模型
    BERT模型
    Transformer模型
    注意力机制(Attention Mechanism)
    序列到序列模型(seq2seq)
    【Pandas-附件2】查询手册
    【Pandas-附件1】读取excle和csv具体函数
    【pandas-21】实践-同比和环比指标
    【pandas-20】实践(泰坦尼克沉船事件)-特征处理
  • 原文地址:https://www.cnblogs.com/2008nmj/p/10353381.html
Copyright © 2011-2022 走看看