zoukankan      html  css  js  c++  java
  • poj 2528 Mayor's posters

    Mayor's posters
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 33075   Accepted: 9608

    Description

    The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
    • Every candidate can place exactly one poster on the wall.
    • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
    • The wall is divided into segments and the width of each segment is one byte.
    • Each poster must completely cover a contiguous number of wall segments.

    They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
    Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

    Input

    The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

    Output

    For each input data set print the number of visible posters after all the posters are placed.

    The picture below illustrates the case of the sample input.

    Sample Input

    1
    5
    1 4
    2 6
    8 10
    3 4
    7 10
    

    Sample Output

    4
    代码+ 注释
    
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #define maxn 10001
    using namespace std ;
    int set[maxn*3] ;
    bool vi[maxn*2] ;
    struct ind
    {
        int x , id ;
    }qe[maxn*2] ;
    struct node
    {
        int x , y ;
    }q[maxn] ;
    int x1 , x2 , v ,mun ;
    int cmp( ind a  , ind b )
    {
        return a.x < b.x ;
    }
    void push( int o )
    {
        int lc = o*2 ;int rc = o*2+1 ;
        if( set[o] >=0 ) // 往下更新
        {
            set[lc] = set[rc] = set[o] ;
            set[o] = -1 ;// 记得标记
        }
    }
    void update( int o , int L ,int R )
    {
        int lc = o*2 , rc = o*2+1 ;
        if(x1 <= L && x2 >= R )
        {
            set[o] =  v ;
        }
        else 
        {
            push(o) ; //把之前没有更新的一起带下去更新
            int mid = ( L + R )/2 ;
            
            if( x1 <= mid )update( lc , L ,mid ) ;
            if( x2 > mid )update( rc , mid + 1 , R ) ;
        } 
    }
    void find ( int o , int L , int R )  
    {  
        if ( set[o] != -1 )  
        {  
            if( set[o] > 0 && !vi[set[o]] )  
            {  
                vi[set[o]] = 1;  
                mun++;  
            }  // 如果当前有标记则不再往下找
            return;  
        }  
        if ( L == R ) return;  
        int mid = ( L + R ) >> 1 ;
        find ( o*2 , L , mid  );  
        find ( o*2+1 , mid+1,R );  
    }  
    int main()
    {
        int i , j , n , T , x , y ;
        scanf( "%d" , &T ) ;
        while( T-- )
        {
            scanf( "%d" , &n) ;int len = 0 ;
            memset( q , 0 , sizeof(q) ); 
            memset( vi ,0 , sizeof(vi) ) ;
            for( i = 1 ; i <= n ;i++ )
            {
                scanf( "%d%d" ,&x , &y) ;
                qe[len].x = x ;qe[len++].id = i ;
                qe[len].x = y ;qe[len++].id = i ;
            }
            memset( set , -1 , sizeof(set)) ;
            sort( qe , qe + len , cmp ) ;
            j = 0 ;
            int id , w ;
            x =-1 ;// 下面是离散化
            for( i = 0 ; i < len ;i++ )
            {
                id = qe[i].id ; w = qe[i].x ;
                if( x != w ){ j++ ;x = w ; }
    
                if( q[id].x != 0 )
                {
                    q[id].y = j;
                    y = j ;
                }
                else { q[id].x = j;y = j ;} 
            }
          // 下面是线段树成段更新
          for( i = 1 ; i <= n ;i++ )
          {
              x1 = q[i].x ; x2 = q[i].y ;
              v = i ;         
              update( 1 ,1 ,y ) ;
          }
          mun = 0 ;
          find( 1 ,1 ,y ) ;
          printf( "%d\n" , mun ) ;
         }
    }
  • 相关阅读:
    每月碎碎念 | 2019.7
    聊聊HTML5中的Web Notification桌面通知
    Python的海龟绘图法小知识
    面向对象是什么意思?通俗易懂
    HTML实体
    gcc错误[Error] ld returned 1 exit status
    Markdown怎么使用制表符TAB键?为什么TAB失灵了?
    力扣题解——2的幂
    Jquery中的Ajax
    7个你可能不认识的CSS单位
  • 原文地址:https://www.cnblogs.com/20120125llcai/p/3119466.html
Copyright © 2011-2022 走看看