zoukankan      html  css  js  c++  java
  • uva 10288 gailv

    Problem F
    
    Coupons
    
    Input: standard input
    
    Output: standard output
    
    Time Limit: 2 seconds
    
    Memory Limit: 32 MB
    
     
    
    Coupons in cereal boxes are numbered 1 to n, and a set of one of each is required for a prize (a cereal box, of course). With one coupon per box, how many boxes on average are required to make a complete set ofn coupons?
    
    Input
    
    Input consists of a sequence of lines each containing a single positive integern, 1<=n<=33, giving the size of the set of coupons. Input is terminated by end of file.
    
    Output
    
    For each input line, output the average number of boxes required to collect the complete set ofn coupons. If the answer is an integer number, output the number. If the answer is not integer, then output the integer part of the answer followed by a space and then by the proper fraction in the format shown below. The fractional part should be irreducible. There should be no trailing spaces in any line of output.
    
    Sample Input
    
    2
    5
    17
    Sample Output
    
    3 
       5
    11 --
       12
       340463
    58 ------

    记得每次求gcd不然会爆掉。 思路:到k张时。我们还有n-k张没有得到。所以我们得到的概率为n-k/n;

    所以到k+1步的期望时n/n-k;

    整理得 n* 1/i(n>i>1)的累加

    #include <iostream>
    #include <string.h>
    #include <stdio.h>
    #include <algorithm>
    using namespace std;
    #define ll long long
    ll gcd(ll n,ll m)
    {
        if(m==0)
            return n;
        return gcd(m,n%m);
    }
    int geth(ll x)
    {
        int ans=0;
        while(x>0)
        {
            x=x/10;
            ans++;
        }
        return ans;
    }
    int main()
    {
        ll  n;
        while(~scanf("%lld",&n))
        {
            
            ll fenmu=1;
            ll temp=1;
            for(int i=1;i<=n;i++)
            {
                temp=gcd(fenmu,i);
                fenmu=fenmu*i/temp;
            }
            ll fenzi=0;
            for(int i=1;i<=n;i++)
            {
                fenzi+=fenmu/i;
                
            }
            fenzi=fenzi*n;
            ll p=gcd(fenzi,fenmu);
            fenzi/=p;
            fenmu/=p;
            ll t=fenzi/fenmu;
            if(fenzi-fenmu*t>0)
            {
                if(t!=0)
                {
                    ll a=geth(t);
                    for(int i=0;i<=a;i++)
                    {cout<<" ";}
                    cout<<fenzi-fenmu*t;
                    ll b=geth(fenzi-fenmu*t);
                    ll c=geth(fenmu);
                    if(b>c)
                        c=b;
                    cout<<endl;
                    cout<<t<<" ";
                    for(int i=1;i<=c;i++)
                    {cout<<"-";}
                    cout<<endl;
                    for(int i=0;i<=a;i++)
                    {cout<<" ";}
                    cout<<fenmu<<endl;
                }
            }
            else
                cout<<t<<endl;
            
        }
        
        
        return 0;
    }
  • 相关阅读:
    Sametime SDK
    final,finally和 finalize的区别
    静态工厂方法
    LinkedTransferQueue原理
    SynchronousQueue和LinkedBlockingQueue区别
    SynchronousQueue中TransferStack原理详解
    SynchronousQueue中TransferQueue原理详解
    jdk Queue
    netty NioEventLoopGroup 分析
    Netty Server 启动时序图
  • 原文地址:https://www.cnblogs.com/2014slx/p/9538251.html
Copyright © 2011-2022 走看看