zoukankan      html  css  js  c++  java
  • 矩阵快速幂 POJ 3735 Training little cats

    题目传送门

     1 /*
     2     题意:k次操作,g:i猫+1, e:i猫eat,s:swap
     3     矩阵快速幂:写个转置矩阵,将k次操作写在第0行,定义A = {1,0, 0, 0...}除了第一个外其他是猫的初始值
     4         自己讲太麻烦了,网上有人讲的很清楚,膜拜之
     5     详细解释:http://www.cppblog.com/y346491470/articles/157284.html
     6 */
     7 #include <cstdio>
     8 #include <cstring>
     9 #include <cmath>
    10 #include <algorithm>
    11 using namespace std;
    12 
    13 typedef long long ll;
    14 const int MAXN = 1e2 + 10;
    15 const int INF = 0x3f3f3f3f;
    16 struct Mat  {
    17     ll m[MAXN][MAXN];
    18     Mat ()  {
    19         memset (m, 0, sizeof (m));
    20     }
    21     void init(void) {
    22         for (int i=0; i<MAXN; ++i)  m[i][i] = 1;
    23     }
    24 };
    25 int n, m, k;
    26 
    27 Mat operator * (Mat &a, Mat &b) {
    28     Mat ret;
    29     for (int k=0; k<=n; ++k)    {
    30         for (int i=0; i<=n; ++i)    {
    31             if (a.m[i][k])  {
    32                 for (int j=0; j<=n; ++j)    {
    33                     ret.m[i][j] += a.m[i][k] * b.m[k][j];
    34                 }
    35             }
    36         }
    37     }
    38     return ret;
    39 }
    40 
    41 Mat operator ^ (Mat x, int n)   {
    42     Mat ret;    ret.init ();
    43     while (n)   {
    44         if (n & 1)  ret = ret * x;
    45         x = x * x;
    46         n >>= 1;
    47     }
    48     return ret;
    49 }
    50 
    51 int main(void)  {       //POJ 3735 Training little cats
    52     while (scanf ("%d%d%d", &n, &m, &k) == 3)   {
    53         if (!n && !m && !k) break;
    54         Mat A, T;   A.m[0][0] = 1;  T.init ();
    55         char op[5]; int p, q;
    56         while (k--) {
    57             scanf ("%s", op);
    58             if (op[0] == 'g')    {
    59                 scanf ("%d", &p);   T.m[0][p]++;
    60             }
    61             else if (op[0] == 'e')  {
    62                 scanf ("%d", &p);
    63                 for (int i=0; i<=n; ++i)    T.m[i][p] = 0;
    64             }
    65             else    {
    66                 scanf ("%d%d", &p, &q);
    67                 for (int i=0; i<=n; ++i)    swap (T.m[i][p], T.m[i][q]);
    68             }
    69         }
    70         Mat ans = A * (T ^ m);
    71         for (int i=1; i<=n; ++i)    printf ("%I64d%c", ans.m[0][i], (i==n) ? '
    ' : ' ');
    72     }
    73 
    74     return 0;
    75 }
    编译人生,运行世界!
  • 相关阅读:
    java定时任务接口ScheduledExecutorService
    spring InitializingBean接口
    spring aop 的一个demo(未完,待完善)
    Spring ApplicationContextAware获取上下文
    Spring ProxyFactory
    搭建maven+spring+mybatis工程
    spring jdbcTemplate源码剖析
    chrome插件
    基于分支限界法的旅行商问题(TSP)一
    利用分支限界法求解单源最短路(Dijkstra)问题
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4693075.html
Copyright © 2011-2022 走看看